Nanocellulose (NC) is getting ahead as a renewable, biodegradable and biocompatible biomaterial. The NCs for this study were recovered from industrial cotton waste (CFT) by acid hydrolysis (HNC) and by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation (ONC). They were functionalized by radical based glycidyl methacrylate (GMA) grafting providing crystalline HNC-GMA and ONC-GMA, and by allylation (ALL) providing amorphous HNC-ALL and ONC-ALL.
View Article and Find Full Text PDFAmong nanocelluloses, bacterial nanocellulose (BNC) has proven to be a promising candidate in a range of biomedical applications, from topical wound dressings to tissue-engineering scaffolds. Chemical modifications and incorporation of bioactive molecules have been obtained, further increasing the potential of BNC. This study describes the incorporation of vancomycin and ciprofloxacin in BNC and in modified BNC to afford bioactive BNCs suitable for topical wound dressings and tissue-engineering scaffolds.
View Article and Find Full Text PDFSuper paramagnetic iron oxide nanoparticles (SPION) were augmented by both hyaluronic acid (HA) and bovine serum albumin (BSA), each covalently conjugated to dopamine (DA) enabling their anchoring to the SPION. HA and BSA were found to simultaneously serve as stabilizing polymers of Fe₃O₄·DA-BSA/HA in water. Fe₃O₄·DA-BSA/HA efficiently entrapped and released the hydrophobic cytotoxic drug paclitaxel (PTX).
View Article and Find Full Text PDFRecently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool.
View Article and Find Full Text PDF