Publications by authors named "Chiara Abate"

Morin (MRN), an intriguing bioflavonol, has received increasing interest for its antioxidant properties, as have its metal complexes (M-MRN). Understanding their antioxidant behavior is critical to assess their pharmaceutical, nutraceutical potential, and therapeutic impact in the design of advanced antioxidant drugs. To this end, knowing the speciation of different H-MRN and M-MRN is pivotal to understand and compare their antioxidant ability.

View Article and Find Full Text PDF

The study reports the use of nanoassembly based on cationic cyclodextrin carbon nanotubes (CNT-CDs) and ferrocenylcarnosine (FcCAR) for electrochemical sensing of Hg(II) in aqueous solution. β-cyclodextrins (CDs) were grafted onto CNTs by a click chemistry reaction between heptakis-(6-azido-6-deoxy)-β-cyclodextrin and alkyne-terminated CNTs. The cationic amine groups on the CD units were produced by the subsequent reduction of the residual nitrogen groups.

View Article and Find Full Text PDF

This work deals with the synthesis of bare and curcumin (CUR)-loaded chitosan (CS)-based macroparticles by ionic gelation using sodium hydroxide (NaOH) or sodium tripolyphosphate (TPP). The resulting spherical-shaped macroparticles were studied using various characterization techniques, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). The release of CUR from the CS-based particles with respect to time was analyzed, and the encapsulation efficiency and degree of swelling were studied.

View Article and Find Full Text PDF

A potentiometric study on the interactions of L-carnosine (CAR) (2-[(3-aminopropanoyl)amino]-3-(1-imidazol-5-yl)propanoic acid) with two toxic metal cations, Hg and Cd, is reported here. The elucidation of the metal (M)-CAR interactions in aqueous solution highlighted the speciation model for each system, the dependence of the formation constants of the complex species on ionic strength (0.15 ≤ /mol L ≤ 1) and temperature (288.

View Article and Find Full Text PDF

A deep speciation study on L-carnosine (CAR) and Pb system was performed in aqueous solution with the aim to assess its potential use as a sequestering agent of metal cation. To determine the best conditions for Pb complexation, potentiometric measurements were carried out over a wide range of ionic strength (0.15 ≤ I/≤ 1 mol/L) and temperature (15 ≤ T/°C ≤ 37), and thermodynamic interaction parameters (logβ, ΔH, ΔG and TΔS) were determined.

View Article and Find Full Text PDF

In recent years, the study of metal complexes and metal-based nanomaterials has aroused particular interest, leading to the promotion of new effective systems for the abatement of various viral diseases. Starting from the analysis of chemical properties, this review focuses on the employment of metal-based nanoparticles as antiviral drugs and how this interaction leads to a substantial enhancement in antiviral activity. The use of metal-based antiviral drugs has also spread for the formulation of antiviral vaccines, thanks especially to the remarkable adjuvant activities of some of the metal complexes.

View Article and Find Full Text PDF