Publications by authors named "Chiao-I Kuo"

Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown.

View Article and Find Full Text PDF

Cross-linking reaction of Braun's lipoprotein (Lpp) to peptidoglycan (PG) is catalyzed by some members of the YkuD family of transpeptidases. However, the exact opposite reaction of cleaving the Lpp-PG cross-link is performed by DpaA, which is also a YkuD-like protein. In this work, we determined the crystal structure of DpaA to provide the molecular rationale for the ability of the transpeptidase-like protein to cleave, rather than form, the Lpp-PG linkage.

View Article and Find Full Text PDF

Bacterial cells are encased in peptidoglycan (PG), a polymer of disaccharide -acetylglucosamine (GlcNAc) and -acetyl-muramic acid (MurNAc) cross-linked by peptide stems. PG is synthesized in the cytoplasm as UDP-MurNAc-peptide precursors, of which the amino acid composition of the peptide is unique, with l-Ala added at the first position in most bacteria but with l-Ser or Gly in some bacteria. YfiH is a PG-editing factor whose absence causes misincorporation of l-Ser instead of l-Ala into peptide stems, but its mechanistic function is unknown.

View Article and Find Full Text PDF

The Lon protease is the prototype of a family of proteolytic machines with adenosine triphosphatase modules built into a substrate degradation chamber. Lon is known to degrade protein substrates in a processive fashion, cutting a protein chain processively into small peptides before commencing cleavages of another protein chain. Here, we present structural and biochemical evidence demonstrating that processive substrate degradation occurs at each of the six proteolytic active sites of Lon, which forms a deep groove that partially encloses the substrate polypeptide chain by accommodating only the unprimed residues and permits processive cleavage in the C-to-N direction.

View Article and Find Full Text PDF

Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.

View Article and Find Full Text PDF

The Lon protease is ubiquitous in nature. Its proteolytic activity is associated with diverse cellular functions ranging from maintaining proteostasis under normal and stress conditions to regulating cell metabolism. Although Lon was originally identified as an ATP-dependent protease with fused AAA+ (ATPases associated with diverse cellular activities) and protease domains, analyses have recently identified LonC as a class of Lon-like proteases with no intrinsic ATPase activity.

View Article and Find Full Text PDF

The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates.

View Article and Find Full Text PDF

NLRPs (Nucleotide-binding domain, leucine-rich repeat and pyrin domain containing proteins) are a family of pattern-recognition receptors (PRRs) that sense intracellular microbial components and endogenous stress signals. NLRP10 (also known as PYNOD) is a unique NLRP member characterized by a lack of the putative ligand-binding leucine-rich repeat domain. Recently, human NLRP10 has been shown to inhibit the self-association of ASC into aggregates and ASC-mediated procaspase-1 processing.

View Article and Find Full Text PDF

Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA(+) (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA(+) motifs.

View Article and Find Full Text PDF

Our previous studies have demonstrated that osthole, a Chinese herbal compound, could be incorporated into the hydroxycinnamide scaffold of LBH-589, a potent HDAC inhibitor, as an effective hydrophobic cap; the resulting compounds showed significant potency against several HDAC isoforms. Here, we presented a series of osthole derivatives fused with the aliphatic-hydroxamate core of suberoylanilide hydroxamic acid (SAHA), a clinically-approved HDAC inhibitor. Several compounds showed potent activity against nuclear HDACs.

View Article and Find Full Text PDF