Publications by authors named "Chian-Ming Low"

Microscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam.

View Article and Find Full Text PDF

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions.

View Article and Find Full Text PDF

The new Brain Imaging Beamline (BIB) of the Taiwan Photon Source (TPS) has been commissioned and opened to users. The BIB and in particular its endstation are designed to take advantage of bright unmonochromatized synchrotron X-rays and target fast 3D imaging, ∼1 ms exposure time plus very high ∼0.3 µm spatial resolution.

View Article and Find Full Text PDF

Background: Chronic osteoarthritic pain is not well understood in terms of its pathophysiological mechanism. Activated glial cells are thought to play a role in the maintenance of chronic pain. T98G glioblastoma cell line was previously observed to release higher amounts of interleukin-6 (IL-6) when treated with cerebrospinal fluid (CSF) from patients with another chronic pain condition, post-herpetic neuralgia.

View Article and Find Full Text PDF

Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the genes that encode -methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in and Comparison of clinical phenotypes shows that variants are commonly associated with an epileptic phenotype but that variants are commonly found in patients with neurodevelopmental disorders.

View Article and Find Full Text PDF

The present study explored the role of the medial septal region (MS) in experimental neuropathic pain. For the first time, we found that the MS sustains nociceptive behaviors in rodent models of neuropathic pain, especially in the chronic constriction injury (CCI) model and the paclitaxel model of chemotherapy-induced neuropathic pain. For example, inactivation of the MS with intraseptal muscimol (2 μg/μl, 0.

View Article and Find Full Text PDF

Cytosolic phospholipase A (cPLA) is an enzyme that releases arachidonic acid (AA) for the synthesis of eicosanoids and lysophospholipids which play critical roles in the initiation and modulation of oxidative stress and neuroinflammation. In the central nervous system, cPLA activation is implicated in the pathogenesis of various neurodegenerative diseases that involves neuroinflammation, thus making it an important pharmacological target. In this paper, a new class of arachidonic acid (AA) analogues was synthesized and evaluated for their ability to inhibit cPLA.

View Article and Find Full Text PDF

Several studies have indicated that neuroinflammation is indeed associated with neurodegenerative disease pathology. However, failures of recent clinical trials of anti-inflammatory agents in neurodegenerative disorders have emphasized the need to better understand the complexity of the neuroinflammatory process in order to unravel its link with neurodegeneration. Deregulation of Cyclin-dependent kinase 5 (Cdk5) activity by production of its hyperactivator p25 is involved in the formation of tau and amyloid pathology reminiscent of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Cholinergic mechanisms in supramammillary nucleus (SuM), especially the lateral SuM (lSuM) modulates septo-hippocampal neural activity. The lSuM, as compared to the contiguous medial SuM (mSuM) has relatively dense projections to hippocampus and cingulate cortex (Cg). In the present study, we have investigated whether the effects of cholinergic activation of SuM on hippocampal and cortical neural activities involve a cooperative interaction with the medial septum (MS).

View Article and Find Full Text PDF

Arachidonic acid derivatives equipped with either one or two fluorescent groups attached to the tip of the alkyl chains were synthesized and shown to function as inhibitor and substrate probes of cPLA. The inhibitor probe was demonstrated to perform dual functions of inhibition and imaging while the substrate probe could be used for activity assay.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamatergic receptors that have been implicated in learning, development, and neuropathological conditions. They are typically composed of GluN1 and GluN2A-D subunits. Whereas a great deal is known about the role of GluN2A- and GluN2B-containing NMDARs, much less is known about GluN2D-containing NMDARs.

View Article and Find Full Text PDF

N-Methyl-D-aspartate receptors are localized to synaptic and extrasynaptic sites of dendritic spines and shafts. Here, the ontogenic profiles of GluN3A and GluN3B subunits in the rat brain were determined. A developmental switch from GluN3A to GluN3B proteins was detected within the first two postnatal weeks of crude synaptosomes prepared from forebrain and midbrain.

View Article and Find Full Text PDF

The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB.

View Article and Find Full Text PDF

The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies.

View Article and Find Full Text PDF

The effect of ApoE on NMDAR-dependent ERK/CREB signaling is isoform-dependent, and ApoE4 accelerates memory decline in ageing. However, this isoform-dependent function on neuronal signaling during ageing is unclear. In this study, we have examined NMDAR-associated ERK/CREB signal transduction in young and aged huApoE3 and huApoE4 targeted replacement (TR) mice.

View Article and Find Full Text PDF

Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD). Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD.

View Article and Find Full Text PDF

The forebrain cholinergic neurons project to cortex, including the hippocampus and the cingulate cortex (Cg). However, the relative influence of these neurons on behavior-linked neural processing in the two cortical areas remains unclear. We have now examined the effect of destruction of the cholinergic neurons with microinjection of the immunotoxin 192 IgG-saporin into the medial septum on the induction of c-Fos protein, an index of neuronal synaptic excitation, in the two forebrain areas to varied episodic experiences.

View Article and Find Full Text PDF

Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors.

View Article and Find Full Text PDF

The deregulation of cyclin-dependent kinase 5 (Cdk5) by p25 has been shown to contribute to the pathogenesis in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). In particular, p25/Cdk5 has been shown to produce hyperphosphorylated tau, neurofibrillary tangles as well as aberrant amyloid precursor protein processing found in AD. Neuroinflammation has been observed alongside the pathogenic process in these neurodegenerative diseases, however the precise mechanism behind the induction of neuroinflammation and the significance in the AD pathogenesis has not been fully elucidated.

View Article and Find Full Text PDF

Nociceptin/orphanin FQ (N/OFQ) and nocistatin are derived from the same precursor peptide, prepronociceptin. N/OFQ and nocistatin have been postulated to participate in pain modulation. In this study, we investigated whether the prepronociceptin, N/OFQ and nocistatin concentrations in the brain and spinal cord would be altered in chronic constriction injury and diabetic rat neuropathic pain models.

View Article and Find Full Text PDF

N-Methyl-d-aspartate (NMDA) receptors are multi-subunit receptors formed from assembly of NR1 with NR2 and/or NR3 subunits. In this study, we investigated the role of a conserved RERLR motif present in a region within the distal carboxyl terminal of rat NR3B (between residues 952 and 984) in targeting NR1-1a/NR3B and NR1-2a/NR3B receptors to the cell surface. Surface biotinylation, confocal immunofluorescence microscopy and site-directed mutagenesis studies showed RERLR motif does not influence the surface expression of NR1-1a/NR3B NMDA receptor complex.

View Article and Find Full Text PDF

The NR3 subunits (NR3A and NR3B) are new players in a well established field of N-methyl-d-aspartate (NMDA) receptors, previously involving the NR1 and NR2 subunits. Their incorporation into conventional NMDA receptors forms glutamate-activated NR1/NR2/NR3 triheteromers, whereas the omission of the glutamate-binding NR2 subunits results in excitatory glycine-activated NR1/NR3 diheteromers. These NR3-containing NMDA receptors exhibit several differences in receptor properties compared with the conventional NR1/NR2 receptors.

View Article and Find Full Text PDF

Rat pheochromocytoma (PC12) cells have been shown to lack functional NMDA receptors; yet, these cells express NR1 subunits of the NMDA receptor. The reason for the lack of functional receptors has been attributed to the absence of significant levels of NR2 subunits to co-assemble with NR1. It is known that PC12 expresses very low levels of NR2C, with complete absence of other types of NR2 subunits.

View Article and Find Full Text PDF

Hydrogen sulfide (H(2)S) is now known as a new biological mediator. In the present study, the effects of H(2)S on intracellular calcium ([Ca(2+)](i)) in neuronal SH-SY5Y cells was investigated. In SH-SY5Y neuronal cells, NaHS, a H(2)S donor, concentration-dependently increased [Ca(2+)](i).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionso1fil91740ll87jlrfbp0en6v3d2vki): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once