Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited.
View Article and Find Full Text PDFMol Plant Pathol
September 2023
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R.
View Article and Find Full Text PDFPlant defense responses include the extracellular release of defense-related molecules, such as pathogenesis-related proteins and secondary metabolites, as well as cell wall materials. This primarily depends on the trafficking of secretory vesicles to the plasma membrane, where they discharge their contents into the apoplastic space via soluble N-ethylmaleimide sensitive factor attachment protein receptor-assisted exocytosis. However, some pathogenic and symbiotic microbes have developed strategies to manipulate host plant exocytic pathways.
View Article and Find Full Text PDFPlant Signal Behav
December 2022
Soluble -ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are essential for vesicle trafficking in plants. Vesicle-associated membrane protein 721 and 722 (VAMP721/722) are secretory vesicle-localized R-SNAREs, which are involved in a variety of biological processes in plants. Compared to VAMP721/722, a VAMP721/722-interacting plasma membrane (PM)-localized Qa-SNARE is engaged in a rather specific physiological process.
View Article and Find Full Text PDFBackground: Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses.
View Article and Find Full Text PDFVesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble -ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against () DC3000 by regulating SYP132-VAMP721/722 interactions.
View Article and Find Full Text PDFIn eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble -ethylmaleimide-sensitive factor attachment protein receptors (SNAREs).
View Article and Find Full Text PDFCubic-shaped AgPO crystals with a mean size of 1 μm were synthesized by a precipitation method from a mixed solution of AgNO, NaHPO, and triethanolamine. The antibacterial activities against , , and DC3000 in both the absence and presence of AgPO under dark conditions and in the presence of AgPO under red-light (625 nm) and blue-light (460 nm) irradiation were examined. The concentrations of reactive oxygen species (ROS) were also measured in the antibacterial action of the AgPO against The photoinduced enhancement of the AgPO antibacterial activity under blue-light irradiation is explained by the formation of ROS during the antibacterial action of the AgPO.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2020
We previously found that VAMP721/722 SNARE proteins guide secretory vesicles to pathogen-attacking sites during immune responses in Arabidopsis, which suggests that these vesicles should deliver immune molecules. However, the lethality of vamp721 vamp722 double null mutant makes it difficult to understand the nature of cargo transported via VAMP721/722 vesicles. Since VAMP721/722-depleted (VAMP721VAMP722 and VAMP721VAMP722) plants show compromised resistance to extracellular pathogens, we assume that an immune protein secreted through the VAMP721/722-engaged exocytosis would be remained more in VAMP721/722-depleted plants than WT.
View Article and Find Full Text PDFSessile plants are continuously threatened by biotic and abiotic environmental stresses. Since stress responses are in general accompanied by growth retardation, plants in nature should tightly control timing and duration of their stress responses for sustained growth. We previously reported that vesicle-associated membrane protein (VAMP) 721 and 722 are required for growth/development and stress responses in plants.
View Article and Find Full Text PDFExcessive demand for translation and protein folding in the endoplasmic reticulum (ER) can cause ER stress in plants. Here, we show that CALRETICULIN 1 (CRT1) and CRT2 are critical components in the accumulation of VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 during ER stress responses. We show that CRT2 interacts with VAMP722 and that CRT1/2 post-translationally maintain elevated VAMP721/722 levels under ER stress.
View Article and Find Full Text PDFTo defend against extracellular pathogens, plants primarily depend on cell-autonomous innate immunity due to the lack of the circulatory immune system including mobile immune cells. To extracellularly restrict or kill the pathogens, plant cells dump out antimicrobials. However, since antimicrobials are also toxic to plant cells themselves, they have to be safely delivered to the target sites in a separate vesicular compartment.
View Article and Find Full Text PDFInnate immune responses in host plants begin with the recognition of pathogen-specific nonself molecules and terminate with the secretion of immune molecules. In the dicotyledonous model plant, Arabidopsis thaliana, two distinct secretory pathways required for disease resistance to powdery mildew fungi have been identified so far. One is an exocytic pathway consisting of PEN1, SNAP33 and VAMP721/722 SNARE proteins, but the other is an efflux-mediated one composed of PEN2 atypical myrosinase and PEN3 ABC transporter.
View Article and Find Full Text PDFWe previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC) can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P.
View Article and Find Full Text PDFPEN1, one of the plasma membrane (PM) syntaxins, comprises an immune exocytic pathway by forming the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex with SNAP33 and VAMP721/722 in plants. Although this secretory pathway is also involved in plant growth and development, how plants control their exocytic activity is as yet poorly understood. Since constitutive PEN1 cycling between the PM and endocytosed vesicles is critical for its immune activity, we studied here the relationship of PEN1 to synaptotagmin 1 (SYT1) that is known to regulate endocytosis at the PM.
View Article and Find Full Text PDFIn multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation.
View Article and Find Full Text PDFSeveral GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait.
View Article and Find Full Text PDFIn contrast to animals, plants do not have a circulatory system as well as mobile immune cells that allow them to protect themselves against pathogens. Instead, plants exclusively depend on the innate immune system to defend against pathogens. As typically observed in the animal innate immunity, plant immune responses are composed of pathogen detection, defense signaling which includes transcriptional reprogramming, and secretion of antimicrobial compounds.
View Article and Find Full Text PDFRoot hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), SYP123 and SYP132, in the growth of root hair in Arabidopsis.
View Article and Find Full Text PDFPlant Signal Behav
November 2013
The PEN1-SNAP33-VAMP721/722 exocytic pathway is a conserved immunity-associated secretory pathway between monocotyledonous barley and dicotyledonous Arabidopsis plants. In Arabidopsis, this secretory pathway plays an additional role in plant growth and development. However, how this pathway can be manipulated to engage in both growth/development and immunity remains to be answered.
View Article and Find Full Text PDFExtracellular immune responses to ascomycete and oomycete pathogens in Arabidopsis are dependent on vesicle-associated secretion mediated by the SNARE proteins PEN1 syntaxin, SNAP33 and endomembrane-resident VAMP721/722. Continuous movement of functional GFP-VAMP722 to and from the plasma membrane in non-stimulated cells reflects the second proposed function of VAMP721/722 in constitutive secretion during plant growth and development. Application of the bacterium-derived elicitor flg22 stabilizes VAMP721/722 that are otherwise constitutively degraded via the 26S proteasome pathway.
View Article and Find Full Text PDFSoluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are core factors in driving vesicle fusion with target membranes, which is critical in eukaryotes having distinct subcellular organelles. Amongst them, vesicle-associated membrane proteins (VAMP) 721 and 722 are involved in plant growth/development and immunity. In the course of stress responses, plants often show retarded growth.
View Article and Find Full Text PDFAutophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed.
View Article and Find Full Text PDFAs sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses.
View Article and Find Full Text PDFTelomere is an essential DNA-protein complex composed of repetitive DNA and binding proteins to protect the chromosomal ends in eukaryotes. Telomere length is regulated by a specialized RNA-dependent DNA polymerase, telomerase and associated proteins. We show here a potential role of STEP1 that was previously isolated by affinity chromatography in controlling telomere length.
View Article and Find Full Text PDF