The heterotrimeric protein phosphatase 2A (PP2A) complex catalyzes about half of Ser/Thr dephosphorylations in eukaryotic cells. A CAG repeat expansion in the neuron-specific protein PP2A regulatory subunit PPP2R2B gene causes spinocerebellar ataxia type 12 (SCA12). We established five monoallelic missense variants in PPP2R2B (four confirmed as de novo) as a cause of intellectual disability with developmental delay (R149P, T246K, N310K, E37K, I427T).
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction.
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction.
View Article and Find Full Text PDFIn many experimental studies, pharmacological levels of taurine have been used to study physiological functions of taurine. However, this approach is unlikely to be fruitful, as pharmacological administration increases extracellular taurine, while physiological actions of taurine require alterations in intracellular taurine. Recognizing that different mechanisms might underlie the pharmacological and physiological actions of taurine, cardiac properties before and after exposure to various extracellular or intracellular concentrations of taurine were examined.
View Article and Find Full Text PDFTaurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan.
View Article and Find Full Text PDFNeurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits.
View Article and Find Full Text PDFWe determined whether North American ginseng ( L.) mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates.
View Article and Find Full Text PDFCardiac pathology including hypertrophy has been associated with an imbalance between mitochondrial fission and fusion. Generally, well-balanced mitochondrial fission and fusion are essential for proper functions of mitochondria. Leptin is a 16-kDa appetite-suppressing protein which has been shown to induce cardiomyocyte hypertrophy.
View Article and Find Full Text PDFTaurine forms a conjugate in the mitochondria with a uridine residue in the wobble position of tRNA. The resulting product, 5-taurinomethyluridine tRNA, increases the interaction between the UUG codon and AAU anticodon of tRNA, thereby improving the decoding of the UUG codon. We have shown that the protein most affected by the taurine conjugation product is ND6, which is a subunit of complex I of the respiratory chain.
View Article and Find Full Text PDFTaurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood.
View Article and Find Full Text PDFHyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation.
View Article and Find Full Text PDFTaurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain.
View Article and Find Full Text PDFTaurine depletion leads to impaired mitochondrial function, as characterized by reduced ATP production and elevated superoxide generation. These defects can fundamentally alter cardiomyocyte function and if left unchanged can result in cell death. To protect against these stresses, cardiomyocytes possess quality control processes, such as the ubiquitin-proteasome system (UPS) and autophagy, which can rejuvenate cells through the degradation of damaged proteins and organelles.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2015
Taurine is a beta-amino acid found in very high concentration in the heart. Depletion of these intracellular stores results in the development of cardiomyopathy, thought to be mediated by abnormal sarcoplasmic reticular (SR) Ca(2+) transport. There is also evidence that taurine directly alters the Ca(2+) sensitivity of myofibrillar proteins.
View Article and Find Full Text PDFThe major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease.
View Article and Find Full Text PDFMELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) is a mitochondrial disease caused by one or more mutations of tRNA(Leu(UUR)). These mutations reduce both the aminoacylation of tRNA(Leu(UUR)) and a posttranslational modification in the wobble position of tRNA(Leu(UUR)). Both changes result in reduced transcription of mitochondria-encoded proteins; however, reduced aminoacylation affects the decoding of both UUG and UUA while the wobble defect specifically diminishes UUG decoding.
View Article and Find Full Text PDFTaurine is an abundant β-amino acid that concentrates in the mitochondria, where it participates in the conjugation of tRNAs for leucine, lysine, glutamate and glutamine. The formation of 5-taurinomethyluridine-tRNA strengthens the interaction of the anticodon with the codon, thereby promoting the decoding of several codons, including those for AAG, UUG, CAG and GAG. By preventing these series of events, taurine deficiency appears to diminish the formation of 5-taurinomethyluridine and causes inefficient decoding for the mitochondrial codons of leucine, lysine, glutamate and glutamine.
View Article and Find Full Text PDFTaurine is an abundant β-amino acid that regulates several events that dramatically influence the development of ischemia-reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia-reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia-reperfusion mediated cell death.
View Article and Find Full Text PDFBackground: Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied.
Methods: We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts.
Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates into pathological pathways was a key underlying element in the development of diabetic complications. It is widely recognized that flux through glycolysis slows during diabetes.
View Article and Find Full Text PDF