Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of development in the mosquito vector.
View Article and Find Full Text PDFMalaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, the complex regulation of gene expression and genotype-phenotype associations in the mosquito vector, along with sexual reproduction, have hindered the development of screens in this critical part of the parasite life cycle.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2021
malaria remains a major cause of global morbidity and mortality, mainly in sub-Saharan Africa. The numbers of new malaria cases and deaths have been stable in the last years despite intense efforts for disease elimination, highlighting the need for new approaches to stop disease transmission. Further understanding of the parasite transmission biology could provide a framework for the development of such approaches.
View Article and Find Full Text PDFAfter being ingested by a female mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission.
View Article and Find Full Text PDFMalaria is a mosquito-borne disease affecting millions of people every year. The rodent parasite Plasmodium berghei has served as a model for human malaria transmission studies and played a pivotal role in dissecting the mosquito immune response against infection. The 6-cysteine protein P47, known to be important for P.
View Article and Find Full Text PDFMosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 ( invasion of mosquito midgut screen candidate 2), a protein with structural similarities to subtilisin-like proteins.
View Article and Find Full Text PDFThe malaria parasite develops sexually in the mosquito midgut upon entry with the ingested blood meal before it can invade the midgut epithelium and embark on sporogony. Recent data have identified a number of distinct transcriptional programmes operating during this critical phase of the parasite life cycle. We aimed at characterizing the parental contribution to these transcriptional programmes and establish the genetic framework that would guide further studies of Plasmodium zygotic development and ookinete-to-oocyst transition.
View Article and Find Full Text PDFThe passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito.
View Article and Find Full Text PDF