We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam.
View Article and Find Full Text PDFA large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis.
View Article and Find Full Text PDFA new kinetic model of the Na(+)/H(+) exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na(+)/K(+) pump, background H(+), and Na(+) fluxes. This minimum cell model was validated by reconstructing recovery of pH(i) from acidification, accompanying transient increase in [Na(+)](i) due to NHE activity.
View Article and Find Full Text PDFTo quantitatively understand intracellular Na+ and Cl- homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl- channel (ICFTR) during the beta1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of beta1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl-), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl- concentration and cell volume. These results are consistent with experimental data.
View Article and Find Full Text PDFWe addressed the question how Ca2+ transients affect gap junction conductance (Gj) during action potential (AP) propagation by constructing a dynamic gap junction model coupled with a cardiac cell model. The kinetics of the Ca2+ gate was determined based on published experimental findings that the Hill coefficient for the [Ca2+]i-Gj relationship ranges from 3 to 4, indicating multiple ion bindings. It is also suggested that the closure of the Ca2+ gate follows a single exponential time course.
View Article and Find Full Text PDF