Publications by authors named "Chiaki Oka"

We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam.

View Article and Find Full Text PDF

A large amount of experimental data on the characteristics of the cardiac Na(+)/K(+) pump have been accumulated, but it remains difficult to predict the quantitative contribution of the pump in an intact cell because most measurements have been made under non-physiological conditions. To extrapolate the experimental findings to intact cells, we have developed a comprehensive Na(+)/K(+) pump model based on the thermodynamic framework (Smith and Crampin, 2004) of the Post-Albers reaction cycle combined with access channel mechanisms. The new model explains a variety of experimental results for the Na(+)/K(+) pump current (I(NaK)), including the dependency on the concentrations of Na(+) and K(+), the membrane potential and the free energy of ATP hydrolysis.

View Article and Find Full Text PDF

A new kinetic model of the Na(+)/H(+) exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na(+)/K(+) pump, background H(+), and Na(+) fluxes. This minimum cell model was validated by reconstructing recovery of pH(i) from acidification, accompanying transient increase in [Na(+)](i) due to NHE activity.

View Article and Find Full Text PDF

To quantitatively understand intracellular Na+ and Cl- homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl- channel (ICFTR) during the beta1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of beta1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl-), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl- concentration and cell volume. These results are consistent with experimental data.

View Article and Find Full Text PDF

We addressed the question how Ca2+ transients affect gap junction conductance (Gj) during action potential (AP) propagation by constructing a dynamic gap junction model coupled with a cardiac cell model. The kinetics of the Ca2+ gate was determined based on published experimental findings that the Hill coefficient for the [Ca2+]i-Gj relationship ranges from 3 to 4, indicating multiple ion bindings. It is also suggested that the closure of the Ca2+ gate follows a single exponential time course.

View Article and Find Full Text PDF