Publications by authors named "Chiaki Morimoto"

We have developed an autologous transplantation method using adipose tissue-derived multi-lineage progenitor cells (ADMPCs) as a method of periodontal tissue regeneration that can be adapted to severe periodontal disease. Our previous clinical study confirmed the safety of autologous transplantation of ADMPCs and demonstrated its usefulness in the treatment of severe periodontal disease. However, in the same clinical study, we found that the fibrin gel used as the scaffold material might have caused gingival recession and impaired tissue regeneration in some patients.

View Article and Find Full Text PDF

Background: New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts.

View Article and Find Full Text PDF

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting periodontal tissue. Current periodontal regenerative therapies have unsatisfactory efficacy; therefore, periodontal tissue engineering might be established by developing new cell-based therapies. In this study, we evaluated the safety and efficacy of adipose tissue-derived multi-lineage progenitor cells (ADMPC) autologous transplantation for periodontal tissue regeneration in humans.

View Article and Find Full Text PDF

Objective: To investigate the mutual regulation of hypoxia-inducible factor (HIF)-1α activity and periodontal ligament-associated protein-1 (PLAP-1) expression in human periodontal ligament cells (HPDLs).

Background: Cellular responses to hypoxia regulate various biological events (e.g.

View Article and Find Full Text PDF

Background: Cellular responses to hypoxia regulate various biological events, including angiogenesis and extracellular matrix metabolism. Collagen is a major component of the extracellular matrix in periodontal tissues and its coordinated production is essential for tissue homeostasis. In this study, we investigated the effects of hypoxia on collagen production in human gingival fibroblasts (HGFs) and human periodontal ligament cells (HPDLs).

View Article and Find Full Text PDF

Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells.

View Article and Find Full Text PDF

Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated.

View Article and Find Full Text PDF