Publications by authors named "Chiaki Matsukura"

In early developing tomato ( L.) fruit, starch accumulates at high levels and is used by various primary metabolites in ripening fruits. ADP-glucose pyrophosphorylase is responsible for the first key step of starch biosynthesis.

View Article and Find Full Text PDF

γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that has hypotensive effects. Tomato (Solanum lycopersicum L.) is among the most widely cultivated and consumed vegetables in the world and contains higher levels of GABA than other major crops.

View Article and Find Full Text PDF

The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain.

View Article and Find Full Text PDF

Unlabelled: The 14-3-3 proteins participate in many aspects of plant physiology by interacting with phosphorylated proteins and thereby regulating target protein functions. In Arabidopsis plant, the ubiquitin ligase ATL31 controls 14-3-3 stability via both direct interaction and ubiquitination, and this consequently regulates post-germinative growth in response to carbon and nitrogen nutrient availability. Since 14-3-3 proteins regulate the activities of many key enzymes related to nutrient metabolism, one would anticipate that they should play an essential role not only in vegetative but also in reproductive tissue.

View Article and Find Full Text PDF

Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme and is utilized in the gluconeogenesis pathway in plants. Although, its catalytic and regulatory properties are quite well understood, there are uncertainties regarding its physiological role in many plants tissues such as the flesh of developing fruits. To further understand the function of PEPCK in fruits and other tissues, RNAi transgenic tomato plants in which SlPEPCK transcription was down-regulated by either CaMV 35S constitutive promoter or the fruit-specific E8 promoter were generated and characterized on the basis of their phenotypic and metabolic aspects.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits.

View Article and Find Full Text PDF

Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion of GABA has not been fully understood.

View Article and Find Full Text PDF

Seed germination is the initial step of plant development. Seed priming with salt promotes seed germination in tomato (Solanum lycopersicum L.); however, the molecular and physiological mechanisms underlying the enhancement of seed germination by priming remain to be elucidated.

View Article and Find Full Text PDF

The storage of ripe tomatoes in low-O(2) conditions with and without CO(2) promotes γ-aminobutyric acid (GABA) accumulation. The activities of glutamate decarboxylase (GAD) and α-ketoglutarate-dependent GABA transaminase (GABA-TK) were higher and lower, respectively, following storage under hypoxic (2.4 or 3.

View Article and Find Full Text PDF

Glutamate receptor-like genes (GLRs) are intimately associated with plant development, defence responses and signalling pathways. Structural and expression analyses of SlGLRs were performed to better characterise their roles in fruit development and metabolism. Utilising recently released tomato genomic sequence data, 15 GLRs were identified in the tomato genome (SlGLRs).

View Article and Find Full Text PDF

To accelerate functional genomic research in tomato, we developed a Micro-Tom TILLING (Targeting Induced Local Lesions In Genomes) platform. DNA pools were constructed from 3,052 ethyl methanesulfonate (EMS) mutant lines treated with 0.5 or 1.

View Article and Find Full Text PDF

Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis.

View Article and Find Full Text PDF

Salt stress improves the quality of tomato fruits. To clarify the mechanism(s) underlying this phenomenon, we investigated metabolic alterations in tomato fruits exposed to 160 mM salt, focusing on metabolism of organic acids related to the tricarboxylic acid (TCA) cycle and gamma-aminobutyric acid (GABA). Quantitative analyses revealed that most amino acids increased in response to salt stress throughout fruit development, and the effect of the stress was greater in the pericarp than in the columella, whereas organic acids did not show a remarkable tendency to salt stress.

View Article and Find Full Text PDF

This study aimed to investigate the effects of a gamma-aminobutyric acid (GABA) rich tomato (Solanum lycopersicum L.) cultivar 'DG03-9' in comparison with 'Momotaro', a commonly consumed tomato cultivar in Japan, on systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). In a single administration study, treatment with the GABA-rich cultivar elicited a significant decrease in SBP compared to the control group.

View Article and Find Full Text PDF

Salinity stress enhances sugar accumulation in tomato (Solanum lycopersicum) fruits. To elucidate the mechanisms underlying this phenomenon, the transport of carbohydrates into tomato fruits and the regulation of starch synthesis during fruit development in tomato plants cv. 'Micro-Tom' exposed to high levels of salinity stress were examined.

View Article and Find Full Text PDF

A large amount of gamma-aminobutyric acid (GABA) was found to accumulate in tomato (Solanum lycopersicum) fruits before the breaker stage. Shortly thereafter, GABA was rapidly catabolized after the breaker stage. We screened the GABA-rich tomato cultivar 'DG03-9' which did not show rapid GABA catabolism after the breaker stage.

View Article and Find Full Text PDF