J Formos Med Assoc
October 2014
Background/purpose: Traditional dental care, which includes long-term oral hygiene maintenance and scheduled dental appointments, requires effective communication between dentists and patients. In this study, a new system was designed to provide a platform for direct communication between dentists and patients.
Methods: A new mobile app, Dental Calendar, combined with cloud services specific for dental care was created by a team constituted by dentists, computer scientists, and service scientists.
Background/purpose: Our previous work has demonstrated that rat bone marrow stem cells (BMSCs) can transdifferentiate into α-amylase-producing cells after coculture with rat submandibular gland acinar cells. These transdifferentiated cells may be used for regeneration of damaged salivary gland. The purpose of this study was to investigate the global gene expression of rat BMSCs cocultured with rat submandibular gland acinar cells and the factors inducing this transdifferentiation.
View Article and Find Full Text PDFIntroduction: Previous studies have shown that zinc chloride (ZnCl(2)) can induce metallthionein (MT) in the liver and kidney to protect tissues against toxicants and shows a better corneal wound healing than conventional drugs do. We hypothesized that ZnCl(2) can promote odontogenesis of dental pulp stem cells (DPSCs) via MT. The purpose of this study was to investigate the effects of ZnCl(2) on human DPSCs and the expression of MT.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2009
Tissue engineering of salivary glands offers the potential for future use in the treatment of patients with salivary hypofunction. Biocompatible materials that promote acinar cell aggregation and function in vitro are an essential part of salivary gland tissue engineering. In this study, rat parotid acinar cells assembled into three-dimensional aggregates above the polyvinyl alcohol (PVA)-coated surface.
View Article and Find Full Text PDFBackground/purpose: Hypofunction of the salivary glands can substantially affect quality of life. Current treatments for salivary hypofunction are of limited effectiveness. Although the implantation of functional salivary gland tissue from autologous glandular cells represents a possible physiologic solution to this problem, tissue engineering of salivary glands would require the generation of a great number of acinar cells (ACs).
View Article and Find Full Text PDF