Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant gene expression.
View Article and Find Full Text PDFThe concentration gradient of K across the cell membrane of a neuron determines its resting potential and cell excitability. During neurotransmission, the efflux of K from the cell via various channels will not only decrease the intracellular K content but also elevate the extracellular K concentration. However, it is not clear to what extent this change could be.
View Article and Find Full Text PDFDistal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded.
View Article and Find Full Text PDFSilicon nanowire field-effect transistors modified with specific aptamers can directly detect the minute dopamine and neuropeptide Y released from cells. The binding of these molecules to the aptamers results in a conductance change of the transistor biosensor and illustrates the differential releasing mechanisms of these molecules stored in various vesicle pools.
View Article and Find Full Text PDFIn this paper, we report the optoelectronic properties of multi-layered GeS nanosheet (∼28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ∼ 206 A W(-1) under 1.5 μW cm(-2) illumination at λ = 633 nm, Vg = 0 V, and Vds = 10 V.
View Article and Find Full Text PDFPolyglutamine (polyQ) diseases are heritable dominant neurological disorders, caused by abnormal CAG tri-nucleotide expansion in the coding sequence of affected genes. Extension of CAG repeats results in the production of aberrant gene products that are deleterious to neurons, such as transcripts with a CAG stem-loop secondary structure, and proteins containing a long stretch of polyQ residues. Thus, determining methods for the prevention or elimination of these mutant gene products from neuronal cells and translating this knowledge to clinical application are currently important goals in the fields of neurology and neurogenetics.
View Article and Find Full Text PDFProduction of protein containing lengthy stretches of polyglutamine encoded by multiple repeats of the trinucleotide CAG is a hallmark of Huntington's disease (HD) and of a variety of other inherited degenerative neurological and neuromuscular disorders. Earlier work has shown that interference with production of the transcription elongation protein SUPT4H results in decreased cellular capacity to transcribe mutant huntingtin gene (Htt) alleles containing long CAG expansions, but has little effect on expression of genes containing short CAG stretches. zQ175 and R6/2 are genetically engineered mouse strains whose genomes contain human HTT alleles that include greatly expanded CAG repeats and which are used as animal models for HD.
View Article and Find Full Text PDFLengthy trinucleotide repeats encoding polyglutamine (polyQ) stretches characterize the variant proteins of Huntington's disease and certain other inherited neurological disorders. Using a phenotypic screen to identify events that restore functionality to polyQ proteins in S. cerevisiae, we discovered that transcription elongation factor Spt4 is required to transcribe long trinucleotide repeats located either in ORFs or nonprotein-coding regions of DNA templates.
View Article and Find Full Text PDFProtein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease.
View Article and Find Full Text PDF