Publications by authors named "Chia-Lei Lin"

. High no-show rates can burden clinic productivity and affect patient care. Although multiple studies have shown that text messages improve appointment adherence, very little research has focused on low-income and predominantly African American populations in resident clinic settings.

View Article and Find Full Text PDF

Background: Fetal adaptations to high fat (HF) diet in utero (IU) that may predispose to Metabolic Syndrome (MetS) in adulthood include changes in fetal hepatic gene expression. Studies were performed to determine whether maternal exposure to HF diet at different stages during pregnancy had different effects on the fetus, including hepatic gene expression.

Methods: Female wild type mice were fed either a HF or breeding chow (C) for 2 wks prior to mating.

View Article and Find Full Text PDF

Intrauterine (IU) malnutrition could alter pancreatic development. In this study, we describe the effects of high-fat diet (HFD) during pregnancy on fetal growth and pancreatic morphology in an 'at risk' animal model of metabolic disease, the glucose transporter 4 (GLUT4) heterozygous mouse (G4+/-). WT female mice mated with G4+/- males were fed HFD or control diet (CD) for 2 weeks before mating and throughout pregnancy.

View Article and Find Full Text PDF

Genetic and environmental factors, including the in utero environment, contribute to Metabolic Syndrome. Exposure to high fat diet exposure in utero and lactation increases incidence of Metabolic Syndrome in offspring. Using GLUT4 heterozygous (G4+/-) mice, genetically predisposed to Type 2 Diabetes Mellitus, and wild-type littermates we demonstrate genotype specific differences to high fat in utero and lactation.

View Article and Find Full Text PDF

The development of the endocrine pancreas is regulated by several cell-matrix interactions that generate a diverse array of intracellular signals determining the progression of a multipotent progenitor to a mature endocrine cell. This process involves interactions between the epithelium, mesenchyma, and endothelial cells. Later in development, coordinated signaling contributes to the maintenance of the differentiated endocrine cell phenotype.

View Article and Find Full Text PDF

Objective: Induction of mixed or complete chimerism via hematopoietic cell transplantation (HCT) from nonautoimmune donors could prevent or reverse type 1 diabetes (T1D). In clinical settings, HLA-matched HCT is preferred to facilitate engraftment and reduce the risk for graft versus host disease (GVHD). Yet autoimmune T1D susceptibility is associated with certain HLA types.

View Article and Find Full Text PDF

Objective: To test whether induction of chimerism lowers the amount of donor islets required for reversal of diabetes and renders the pancreas a suitable site for islet grafts in autoimmune diabetic mice.

Research Design And Methods: The required donor islet dose for reversal of diabetes in late-stage diabetic NOD mice after transplantation into the liver or pancreas was compared under immunosuppression or after induction of chimerism. Recipient mice were monitored for blood glucose levels and measured for insulin-secretion capacity.

View Article and Find Full Text PDF

3,3'-Diindolylmethane (DIM) is a potential chemopreventive phytochemical derived from Brassica vegetables. In this study we characterized the effect of DIM on cell cycle regulation in both androgen-dependent LNCaP and androgen receptor negative p53 mutant DU145 human prostate cancer cells. DIM had an anti-proliferative effect on both LNCaP and DU145 cells, as it significantly inhibited [3H]-thymidine incorporation.

View Article and Find Full Text PDF

Host dendritic cells (DCs) play a critical role in initiating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL), and separation of GVL from GVHD remains a major challenge in the treatment of hematologic malignancies by allogeneic hematopoietic cell transplantation (HCT). Here, we show that preconditioning with anti-CD3 monoclonal antibody before conditioning with total body irradiation (TBI) prevents GVHD but retains GVL in a HCT model of major histocompatibility complex (MHC)-mismatched C57BL/6 donor to BALB/c host. Prevention of GVHD is associated with inhibition of donor T-cell expression of homing and chemokine receptors, and inhibition of GVHD target tissue expression of chemokines.

View Article and Find Full Text PDF

Th17 is a newly identified T-cell lineage that secretes proinflammatory cytokine IL-17. Th17 cells have been shown to play a critical role in mediating autoimmune diseases such as EAE, colitis, and arthritis, but their role in the pathogenesis of graft-versus-host disease (GVHD) is still unknown. Here we showed that, in an acute GVHD model of C57BL/6 (H-2(b)) donor to BALB/c (H-2(d)) recipient, IL-17(-/-) donor T cells manifested an augmented Th1 differentiation and IFN-gamma production and induced exacerbated acute GVHD.

View Article and Find Full Text PDF

CD103 (alphaEbeta7) has been shown to be an excellent marker for identifying in vivo-activated FoxP3(+)CD4(+) regulatory T (Treg) cells. It is unknown whether reinfusion of in vivo-activated donor-type CD103(+) Treg cells from recipient can ameliorate ongoing chronic graft-versus-host disease (GVHD). Here, we showed that, in a chronic GVHD model of DBA/2 (H-2(d)) donor to BALB/c (H-2(d)) recipient, donor-type CD103(+) Treg cells from recipients were much more potent than CD25(hi) natural Treg cells from donors in reversing clinical signs of GVHD and tissue damage.

View Article and Find Full Text PDF

In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD.

View Article and Find Full Text PDF

Type 1 diabetes in both humans and nonobese diabetic (NOD) mice results from autoreactive T cell destruction of insulin-producing beta cells. Cure of type 1 diabetes may require both reversal of autoimmunity and regeneration of beta cells. Induction of chimerism via allogeneic hematopoietic cell transplantation has been shown to reestablish tolerance in both prediabetic and diabetic NOD mice.

View Article and Find Full Text PDF

Donor CD8(+) T cells play a critical role in mediating graft-vs-leukemia (GVL) activity, but also induce graft-vs-host disease (GVHD) in recipients conditioned with total body irradiation (TBI). In this study, we report that injections of donor C57BL/6 (H-2(b)) or FVB/N (H-2(q)) CD8(+) T with bone marrow cells induced chimerism and eliminated BCL1 leukemia/lymphoma cells without clinical signs of GVHD in anti-CD3-conditioned BALB/c (H-2(d)) recipients, but induced lethal GVHD in TBI-conditioned recipients. Using in vivo and ex vivo bioluminescent imaging, we observed that donor CD8(+) T cells expanded rapidly and infiltrated GVHD target tissues in TBI-conditioned recipients, but donor CD8(+) T cell expansion in anti-CD3-conditioned recipients was confined to lymphohematological tissues.

View Article and Find Full Text PDF