Publications by authors named "Chia-Hung Hsu"

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain.

View Article and Find Full Text PDF

Until recently, sorafenib has been the only treatment approved by the U.S. Food and Drug Administration for patients with advanced hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1 (HIF-1), a transcriptional activator that mediates cellular responses to hypoxic stress, is essential for tumor progression. It is a heterodimer comprising HIF1α and HIF1β, with multiple interfaces among their PAS-A, PAS-B, and bHLH domains. HIF1β is also known as aryl hydrocarbon receptor nuclear translocator (ARNT).

View Article and Find Full Text PDF

Background: Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress.

View Article and Find Full Text PDF

Background: Lung cancer remains a leading cause of cancer-related death, with an annual global mortality rate of 18.4%. Despite advances in diagnostic and therapeutic technologies, non-small cell lung carcinoma (NSCLC) continues to be characterized by a poor prognosis.

View Article and Find Full Text PDF

Osteoarthritis (OA) is most prevalent in older individuals and exerts a heavy social and economic burden. However, an effective and noninvasive approach to OA treatment is currently not available. Chondrocyte senescence has recently been proposed as a key pathogenic mechanism in the etiology of OA.

View Article and Find Full Text PDF

The growth of SrRuO[Formula: see text] (SRO) thin film with high-crystallinity and low residual resistivity (RR) is essential to explore its intrinsic properties. Here, utilizing the adsorption-controlled growth technique, the growth condition of initial SrO layer on TiO[Formula: see text]-terminated SrTiO[Formula: see text] (STO) (001) substrate was found to be crucial for achieving a low RR in the resulting SRO film grown afterward. The optimized initial SrO layer shows a c(2 [Formula: see text] 2) superstructure that was characterized by electron diffraction, and a series of SRO films with different thicknesses (ts) were then grown.

View Article and Find Full Text PDF

Introduction: Emergency decompression is needed in patients with tension pneumothorax, a life-threatening condition. The catheter-based needle thoracostomy was suggested using a 5 cm catheter inserted into the 2nd intercostal space (ICS) and 5th ICS according to the ninth and tenth editions of Advanced Trauma Life Support, respectively. A catheter of suitable length may not be available immediately or the muscle structure of the chest wall may be modified in pneumothorax.

View Article and Find Full Text PDF

The role of an atomic-layer thick periodic Y-O array in inducing the epitaxial growth of single-crystal hexagonal YAlO perovskite (H-YAP) films was studied using high-angle annular dark-field and annular bright-field scanning transmission electron microscopy in conjunction with a spherical aberration-corrected probe and in situ reflection high-energy electron diffraction. We observed the Y-O array at the interface of amorphous atomic layer deposition (ALD) sub-nano-laminated (snl) AlO/YO multilayers and GaAs(111)A, with the first film deposition being three cycles of ALD-YO. This thin array was a seed layer for growing the H-YAP from the ALD snl multilayers with 900 °C rapid thermal annealing (RTA).

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites have attracted great attention as the next generation materials for photovoltaic and light-emitting devices. However, their environment instability issue remains as the largest challenge for practical applications. Recently emerging two-dimensional (2D) perovskites with Ruddlesden-Popper structures are found to greatly improve the stability and aging problems.

View Article and Find Full Text PDF

We report the influence of Mn dopant on magnetic properties of ZnMnO (ZMO)/AlO(0 0 0 1) hetero-epitaxial systems grown by using pulsed-laser deposition. The room temperature (RT) intrinsic ferromagnetic (FM) ordering verified by superconducting quantum interference device magnetometer and x-ray magnetic circular dichroism spectrum of Mn L edges is ascribed to the substitutional Mn atoms in the Zn site of ZnO. Mn in ZMO has a tetrahedral local symmetry instead of the octahedral symmetry of MnO, after verifying the absence of the Mn-related impurities or clusters in ZMO epitaxial film by Mn K-edge and Zn K-edge x-ray absorption spectroscopy spectrum, as well as the analysis of long-range structural ordering on Renninger scan of forbidden (0 0 0 5) reflection in x-ray diffraction, transmission electron microscopy and Raman spectrum.

View Article and Find Full Text PDF

The Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitinating module (DUBm), comprising Ubp8, Sgf11, Sus1, and Sgf73, functions as a deubiquitinase. Data from recent biomolecular experiments have indicated that the H93A mutation in Sgf73 abrogates the enzyme function without interfering with module formation. Interestingly Sgf73 H93 residue is neither involved in the active site nor near the ubiquitin substrate binding site but is capable of influencing the active site through an allosteric mechanism.

View Article and Find Full Text PDF

The covalent electron density, which makes Si(222) measurable, is subject to laser excitation. The three-wave Si(222)/(13 {\overline 1}) diffraction at 7.82 keV is used for phase measurements.

View Article and Find Full Text PDF

Disorder is emerging as a strategy for fabricating random laser sources with very promising materials, such as perovskites, for which standard laser cavities are not effective or too expensive. We need, however, different fabrication protocols and technologies for reducing the laser threshold and controlling its emission. Here, we demonstrate an effectively solvent-engineered method for high-quality perovskite thin films on a flexible polyimide substrate.

View Article and Find Full Text PDF

Saturation and beating of coherent acoustic phonon (CAP) oscillations were observed and attributed to the screening of a built-in electric field with increasing pump power using degenerate pump-probe measurements near the exciton resonance of polar ZnO/ZnMgO multiple quantum wells (MQWs). After purifying the CAP signals by using an empirical mode decomposition, we found not only that the CAP amplitude follows the trend of the band gap renormalization (BGR) and shows saturation at high pump power, but also that the CAP oscillation period coincides with that of the MQWs, consistent with the XRD and TEM results. An additional low-frequency oscillation modifying the CAP signal is revealed due to the negative change in refractive index caused by BGR as the pump power increases.

View Article and Find Full Text PDF

Purpose: The main objective of this study was to investigate the relationship among the clinical characteristics and the frequency of T790M mutation in advanced epidermal growth factor receptor (EGFR)‒mutant lung adenocarcinoma patients with acquired resistance after firstline EGFR‒tyrosine kinase inhibitor (TKI) treatment.

Materials And Methods: We enrolled EGFR-mutant stage IIIB-IV lung adenocarcinoma patients, who had progressed to prior EGFR-TKI therapy, and evaluated their rebiopsy EGFR mutation status.

Results: A total of 205 patients were enrolled for analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Lung cancer is uncommon in young individuals, with the average diagnosis age being 65-70 years; this study focuses on patients aged 45 and under in Taiwan.
  • An analysis of the National Taiwan Lung Cancer Registry (2011-2012) revealed that young lung cancer patients were more likely to be female, never-smokers, and diagnosed with adenocarcinoma, while having a lower rate of EGFR mutations compared to older patients.
  • The study concluded that lung cancer in younger patients presents distinct traits, highlighting differences in gender, smoking status, and cancer type, though the overall stage and primary site of lung cancer were similar across age groups.
View Article and Find Full Text PDF

We report ultrafast excited state dynamics of zinc phthalocyanine and zinc hexadecafluoro phthalocyanine thin films which have nanorod-like structures. Excitons in the singlet states undergo multi-exponential relaxation processes to the ground state and the singlet lifetime within a few tens of picoseconds is attributed to the diffusion-limited exciton annihilation process. Diffusive migration of the singlet excitons shows the anisotropic lifetimes depending on the polarization of probe beam.

View Article and Find Full Text PDF

This study develops the first heteropentametal extended metal atom chain (EMAC) in which a string of nickel cores is incorporated with a diruthenium unit to tune the molecular properties. Spectroscopic, crystallographic, and magnetic characterizations show the formation of a fully delocalized Ru2(5+) unit. This [Ru2]-containing EMAC exhibits single-molecule conductance four-fold superior to that of the pentanickel complex and results in features of negative differential resistance (NDR), which are unobserved in analogues of pentanickel and pentaruthenium EMACs.

View Article and Find Full Text PDF

The growth of highly crystalline rubrene thin films for organic field effect transistor (OFET) application remains a challenge. Here, we report on the vapor-deposited growth of rubrene films on the substrates made of cadmium arachidate (CdA) multilayers deposited onto SiO2/Si(100) via the Langmuir-Blodgett technique. The CdA films, containing 2n+1 layers, with integer n ranging from 0 to 4, are surface-terminated identically by the methyl group but exhibit the thickness-dependent morphology.

View Article and Find Full Text PDF

High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation.

View Article and Find Full Text PDF

Direct-backward third harmonic generation (DBTHG) has been regarded as negligible or even inexistent due to the large value of wave-vector mismatch. In the past, BTHG signals were often interpreted as back-reflected or back-scattered forward-THG (FTHG). In this paper, we theoretically and experimentally demonstrate that backward third harmonic waves can be directly generated, and that their magnitude can be comparable with FTHG in nanostructures.

View Article and Find Full Text PDF
Article Synopsis
  • - Hexagonal-phase single-crystal Gd2 O3 is grown on GaN using molecular beam epitaxy, showing a dielectric constant that is roughly double that of its cubic version when placed on InGaAs or Si.
  • - The capacitive effective thickness of 0.5 nm in hexagonal Gd2 O3 represents one of the lowest values for GaN-metal-oxide-semiconductor devices.
  • - The created heterostructure is thermodynamically stable at high temperatures and maintains low interfacial densities of states even after undergoing high-temperature annealing.
View Article and Find Full Text PDF