Publications by authors named "Chia-Chien Wei"

We consider avalanche photodiodes (APDs) functioning under near Geiger-mode operation for extremely weak light (single or several photons) detection, such as in LiDAR receivers. To meet such demands, APDs which simultaneously have a large active window size, moderate bandwidth (∼GHz), and high internal gain (responsivity), are highly desired. However, it is difficult to design APDs capable of meeting the afore-mentioned performance requirements due to the intrinsic limitations of the gain-bandwidth product (GBP).

View Article and Find Full Text PDF

This study analyzes entropy of broadband chaos excited in a semiconductor laser subject to intensity-modulated optical injection for random number generation with guaranteed unpredictability. It is identified that the flattening of spectral profile around the laser relaxation resonance blurs the periodicity it brings, and thus leads to a high entropy value and a high random number generation rate. The effect of measurement device noise on entropy suggests that both the power of chaos needs to be kept at a level to achieve an adequate signal-to-noise ratio, 24 dB or more, and the entropy contribution of the measurement device noise is excluded in order to assert entropy that can be extracted solely from the intrinsic property of chaos.

View Article and Find Full Text PDF

A FMCW LiDAR system of both the distributed feedback laser and external cavity laser is established in baseband beat notes, rather than up-conversion to an intermediate frequency to exclude flicker noise. Meanwhile, utilizing fast-scanning MEMS mirrors, high-quality real-time (1 fps) 4-D images of the slow-moving object (10 mm/s) can be directly constructed at the baseband with a central frequency as low as 100 kHz and a small Doppler shift. The proposed LiDAR architecture based on such a low-frequency baseband significantly improves the optical power budget on the transmitter side and eliminates the costly high-speed sampling circuits on the receiver side.

View Article and Find Full Text PDF

This study investigates high-entropy chaos generation using a semiconductor laser subject to intensity-modulated optical injection for certified physical random number generation. Chaos with a continuous spectral profile that is not only widely distributed but also broadly flattened over a bandwidth of 33 GHz is generated. The former suggests that the chaos can be sampled at a high rate while keeping sufficient un-correlation between data samples, and the latter indicates that the chaos possesses high entropy, both of which enhance the generation rate of physical random numbers with guaranteed unpredictability.

View Article and Find Full Text PDF

A 24GHz Doppler radar system for accurate contactless monitoring of heart and respiratory rates is demonstrated here. High accuracy predictions are achieved by employing a CNN+LSTM neural network architecture for regression analysis. Detection accuracies of 99% and 98% have been attained for heart rate and respiration rate, respectively.

View Article and Find Full Text PDF

Implementing preprocessing in a delay-division multiplexing (DDM) orthogonal frequency-division multiplexing (OFDM) passive optical network (PON) requires a priori knowledge of channel responses, which need to be estimated under the constraint of sub-Nyquist analog-to-digital sampling. The localized approach allocates subcarriers in different frequency zones to training symbols in different time slots for channel estimation without spectral overlap. Unfortunately, the localized scheme is susceptible to inaccurate estimation when using an avalanche photodiode (APD), due to variations in APD saturation associated with different training symbols.

View Article and Find Full Text PDF

This paper presents a DFT/IDFT-free receiving scheme for spread-OFDM signals. Leveraging sub-Nyquist sampling and proper sampling delay, the proposed scheme enables each user to receive the requested data without the need for DFT and IDFT; thus, the complexity at receiver can be greatly reduced. Nonetheless, DC component is altered in an AC coupling system, such that severe waveform distortion is caused when the process of DFT/IDFT is omitted.

View Article and Find Full Text PDF

This study compared two nonlinear distortion compensation techniques, SSII cancellation (in the frequency domain) and Volterra filtering (in the time domain), in a >50-Gbps/λ OFDM-IMDD LR-PON. Experiment results for SNR, BER, and data rate (based on a bit-loading algorithm) revealed that the performance of frequency-domain SSII cancellation is unaffected by power fading; however, it depends heavily on the precision of the mathematical model. Conversely, although time-domain Volterra filtering is affected by the faded waveform, adaptive-weighting provides flexibility in dealing with mixed nonlinear distortion, particularly that associated with the interplay between fiber dispersion and fiber nonlinearity.

View Article and Find Full Text PDF

We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems.

View Article and Find Full Text PDF

Low-coherence interferometric measurement has been used to investigate optical waveguide devices with high accuracy. By utilizing an incoherent light source, one can generate separate interferogram features for each optical path. The distance between adjacent features of a ring resonator is related to ring length.

View Article and Find Full Text PDF

This paper presents a novel optical single-sideband (SSB) OFDM modulation scheme using a two-segment electro-absorption modulator (EAM). Differences in the chirp characteristics of two segments of the EAM make it possible to design driving signals capable of suppressing one of the optical sidebands, such that the optical OFDM signal does not suffer from frequency-selective power fading following dispersive fiber transmission. Our experiment results demonstrate optical OFDM transmissions at 13.

View Article and Find Full Text PDF

In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity.

View Article and Find Full Text PDF

This study extended the transmission distance of a 100-GHz DD-OFDM-RoF system through the reduction of chromatic dispersion-induced phase noise. The implementation of a pilot-aided phase noise suppression (PPNS) scheme enabled the transmission of distance-insensitive 16.97-Gbps QPSK OFDM over 0~150-km fiber and 2-m air transmission via a DFB laser with linewidth of 1~10-MHz.

View Article and Find Full Text PDF

With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented.

View Article and Find Full Text PDF

In this paper, we propose a two-tiered colorless WDM-OFDMA PON system architecture that draws strengths from each individual WDM and OFDM PON systems. Specifically, the two-tiered architecture enables a colorless transceiver to be shared by a group of ONUs, resulting in drastic reduction of the system cost. For achieving colorlessness via reusing downstream light sources, we discover the residual power of downstream signal unexpectedly springs back after transmissions, causing severe interference to the upstream signal, and thus limiting the data rate of the upstream signal.

View Article and Find Full Text PDF

W-band wireless transmission has attracted a lot of interest due to its wider available bandwidth (i.e. 75-110 GHz).

View Article and Find Full Text PDF

A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.

View Article and Find Full Text PDF

Using a colorless weak-resonant-cavity (WRC) FPLD injected by a centralized light source, we have experimentally demonstrated a superior performance of 20-Gbps uplink transmission in a WDM-PON. Even though the typical modulation bandwidth of a WRC-FPLD is only ~1.25 GHz, using spectrally-efficient 32-QAM OFDM or SC-FDE modulation, 20-Gbps uplink signals can achieve the FEC limit after 25-km dispersion-uncompensated single-mode fiber transmission.

View Article and Find Full Text PDF

We develop a novel subcarrier-to-subcarrier intermixing interference (SSII) cancellation technique to estimate and eliminate SSII. For the first time, the SSII cancellation technique is experimentally demonstrated in an electro-absorption modulator- (EAM-) based intensity-modulation-direct-detection (IMDD) multi-band OFDM transmission system. Since the characteristics of SSII are seriously affected by the chirp parameter, a simple constant chirp model, we found, cannot effectively remove the SSII.

View Article and Find Full Text PDF

We experimentally demonstrate a direct-detection polarization division multiplexed (PDM) orthogonal frequency-division multiplexing (OFDM) scheme without dynamic polarization tracking. Simply using a polarization-diverse receiver, the proposed multiple-input multiple-output assisted system can achieve bit-error rate of 10(-) over all possible received states of polarization. Moreover, 50 Gbps PDM-OFDM transmission over 100 km single-mode fiber is successfully demonstrated without dispersion-induced penalty.

View Article and Find Full Text PDF

This work theoretically studies the transmission performance of a DML-based OFDM system by small-signal approximation, and the model considers both the transient and adiabatic chirps. The dispersion-induced distortion is modeled as subcarrier-to-subcarrier intermixing interference (SSII), and the theoretical SSII agrees with the distortion obtained from large-signal simulation statistically and deterministically. The analysis shows that the presence of the adiabatic chirp will ease power fading or even provide gain, but will increase the SSII to deteriorate OFDM signals after dispersive transmission.

View Article and Find Full Text PDF

This work proposes a novel direct-detection polarization division multiplexed OFDM scheme without the need of dynamic polarization control at a polarization-diverse receiver, and the proposed scheme is robust against polarization mode dispersion. Setting the frequency difference between two polarization-orthogonal reference carriers as one subcarrier spacing, possible signal fading can be avoided, and the corresponding interference from adjacent subcarriers is eliminated by a novel MIMO algorithm. The penalty caused by high channel matrix condition number can be decreased by inserting empty tones among subcarriers, and the polarization-dependent OSNR penalty at the BER of 10⁻³ is <3.

View Article and Find Full Text PDF

This work experimentally demonstrates the efficacy of the 2 × 2 multiple-input multiple-output (MIMO) technique for capacity improvement of a 60-GHz radio-over-fiber (RoF) system employing single-carrier modulation format. We employ frequency domain equalization (FDE) to estimate the channel response, including frequency response of the 60 GHz RoF system and the MIMO wireless channel. Using FDE and MIMO techniques, we experimentally demonstrate the doubling the of wireless data capacity of a 60 GHz RoF system to 27.

View Article and Find Full Text PDF

We develop a dynamic multi-band OFDM subcarrier allocation scheme to fully utilize the available bandwidth under the restriction of dispersion- and chirp-related power fading. The experimental results successfully demonstrate an intensity-modulation-direct-detection 34.78-Gbps OFDM signal transmissions over 100-km long-reach (LR) passive-optical networks (PONs) based on a cost-effective 10-GHz EAM and a 10-GHz PIN.

View Article and Find Full Text PDF

The dispersion-induced phase noise (PN) in an OFDM RoF system at 60 GHz leads to not only subcarrier phase rotation (PRT) but also intercarrier interference (ICI) to severely degrade the transmission performance, when a commercial cost-effective DFB laser with the linewidth of several MHz is adopted. To mitigate both PRT and ICI, a post PN suppression algorithm is proposed, and it does not require any bandwidth-consuming pilot tone. For a 25.

View Article and Find Full Text PDF