Publications by authors named "Chia Lun Hsu"

We have developed a simple and green solution for the synthesis of catalytic gold-doped bismuth oxyiodide (Au/BiOI) nanocomposites at room temperature from an aqueous mixture of gold ions, bismuth ions, and iodide ions. Au nanoparticles (NPs) were formed in situ and doped into BiOI nanosheets. The oxygen vacancies generated in BiOI give rise to its oxidase-like activity, and Au doping facilitated the reaction leading to a 4-fold higher oxidase-like activity of the Au/BiOI nanocomposite.

View Article and Find Full Text PDF

A self-assembled nanocomposite is prepared from an aqueous mixture of aptamer-modified gold nanoparticles (Apt-Au NPs), bismuth ions and chloride ions. The Apt-Au NPs are immobilized on bismuth oxychloride (BiOCl) nanosheets in situ to form Apt-Au NPs/BiOCl nanocomposites. The as-prepared nanocomposites exhibit high peroxidase-like activity for the catalytic conversion of Amplex Red (AR) to fluorescent resorufin in the presence of H2O2.

View Article and Find Full Text PDF

In this study, we employed HgTe nanostructure-based matrices (nanomartrices; NMs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) for the analyses of polyethylene glycol (PEG) derivatives as well as thiol-PEG-modified gold nanoparticles (PEG-Au NPs). Relative to common organic matrices, the use of HgTe NMs as the matrix for SALDI-MS resulted in more highly efficient analyses of PEG derivatives, in terms of sensitivity and reproducibility. The symmetric MS profiles of PEG (Mw: ca.

View Article and Find Full Text PDF

We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ~56 nm and diameter ~12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.

View Article and Find Full Text PDF

We have demonstrated that the incorporation of sulfated galactose acid (sulf-Gal) into thrombin-binding-aptamer (TBA)-conjugated gold nanoparticles (TBA-AuNPs) enables highly effective inhibition of thrombin activity toward fibrinogen. AuNP bioconjugates (TBA(15)/TBA(29)/sulf-Gal-AuNPs) were prepared from 13 nm AuNPs, 15-mer thrombin-binding aptamer (TBA(15)), 29-mer thrombin-binding aptamer (TBA(29)), and sulf-Gal. The numbers of TBA and sulf-Gal molecules per AuNP proved to have a strong impact on inhibitory potency.

View Article and Find Full Text PDF