The aim of this study was to explore the effectiveness in HbA1c lowering and self-efficacy of diabetes self-management of a 6 months coaching intervention. This paper was a two-armed coaching intervention study in which 116 participants who presented type 2 diabetes were recruited at a medical center. The intervention group had health coaching and usual care for 6 months, whereas the control had usual care only.
View Article and Find Full Text PDFPancreatic cancer has an abysmal 5-year survival rate of 8%, making it a deadly disease with a need for novel therapies. Here we describe a multitargeting heparin-based mimetic, necuparanib, and its antitumor activity in both and models of pancreatic cancer. Necuparanib reduced tumor cell proliferation and invasion in a three-dimensional (3D) culture model; , it extended survival and reduced metastasis.
View Article and Find Full Text PDFVascular endothelial growth factor A (VEGF-A) is a promoter of neovascularization and thus a popular therapeutic target for diseases involving excessive growth of blood vessels. In this study, we explored the potential of the disaccharide sucrose octasulfate (SOS) to alter VEGF165 diffusion through Descemet's membrane. Descemet's membranes were isolated from bovine eyes and used as a barrier between two chambers of a diffusion apparatus to measure VEGF transport.
View Article and Find Full Text PDFHeparan sulfate proteoglycans (HSPGs) play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS) mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.
View Article and Find Full Text PDFGrowth factor binding to transmembrane protein receptors is generally understood to initiate cell signaling. Receptor binding of heparin-binding growth factors (HB-GFs), such as fibroblast growth factor-2 (FGF-2), is regulated by interactions with heparan sulfate proteoglycans. While there is some specificity for binding to heparan sulfate, overlap in sites for different growth factors may allow for cross regulation.
View Article and Find Full Text PDFThe antithrombotic activity of heparin has largely been credited with the success found in some cancer treatment by heparin. There are, however, many potent growth factors involved in tumor and blood vessel growth that bind to heparin with high affinity and their regulation by heparin may play a role in heparin's efficacy. We therefore chose to study the activity of a heparin analog, sucrose octasulfate (SOS), which has been similarly shown to interact with heparin-binding growth factors.
View Article and Find Full Text PDFThe structural complexity within heparan sulfate has suggested that it contains multiple protein-specific binding sites. To evaluate the selectivity of growth factor binding to heparan sulfate, we conducted a detailed study of the intercompetition of fibroblast growth factor-2 (FGF-2) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) binding to heparan sulfate (HS) on bovine aortic smooth muscle cells. Radioligand binding assays were conducted, and an analytical method was developed for determining the apparent binding constants and numbers of specific and shared binding sites within HS.
View Article and Find Full Text PDFWe investigated how lipid raft association of HSPG (heparan sulphate proteoglycans) modulates FGF-2 (fibroblast growth factor-2/basic fibroblast growth factor) interactions with vascular smooth-muscle cells. When lipid rafts were disrupted with sterol-binding agents, methyl-beta-cyclodextrin and filipin, FGF-2 binding to HSPG was reduced 2-5-fold, yet the amount and turnover of cell-surface HSPG were unaffected [corrected]. Approx.
View Article and Find Full Text PDF