Publications by authors named "Chi-Yun Pai"

Background: Chromatin insulators or boundary elements are a class of functional elements in the eukaryotic genome. They regulate gene transcription by interfering with promoter-enhancer communication. The Cp190 protein of Drosophila melanogaster is essential to the function of at least three-types of chromatin insulator complexes organized by Su(Hw), CTCF and BEAF32.

View Article and Find Full Text PDF

Background: Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins.

View Article and Find Full Text PDF

Chromatin insulators, or boundary elements, affect promoter-enhancer interactions and buffer transgenes from position effects. The gypsy insulator of Drosophila is bound by a protein complex with two characterized components, the zinc finger protein Suppressor of Hairy-wing [Su(Hw)] and Mod(mdg4)2.2, which is one of the multiple spliced variants encoded by the modifier of mdg4 [mod(mdg4)] gene.

View Article and Find Full Text PDF

Transcriptional activation of the heat shock genes during the heat shock response in Drosophila has been intimately linked to phosphorylation of histone H3 at serine 10, whereas repression of non-heat-shock genes correlates with dephosphorylation of histone H3. It is then possible that specific kinase and/or phosphatase activities may regulate histone phosphorylation and therefore transcription activation and repression, respectively. We find that treatment of cells with strong phosphatase inhibitors interferes with the genome-wide dephosphorylation of histone H3 normally observed at non-heat-shock genes during heat shock.

View Article and Find Full Text PDF