Publications by authors named "Chi-Wang Lin"

Recent improvements in mRNA display have enabled the selection of peptides that incorporate non-natural amino acids, thus expanding the chemical diversity of macrocycles beyond what is accessible in nature. Such libraries have incorporated non-natural amino acids at the expense of natural amino acids by reassigning their codons. Here we report an alternative approach to expanded amino-acid diversity that preserves all 19 natural amino acids (no methionine) and adds 6 non-natural amino acids, resulting in the highest sequence complexity reported to date.

View Article and Find Full Text PDF

Background: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA.

View Article and Find Full Text PDF

Site-specific protein labeling methods allow cell biologists to access the vast array of existing chemical probes for the study of specific proteins of interest in the live cell context. Here we describe the use of the transglutaminase enzyme from guinea pig liver (gpTGase), whose natural function is to cross-link glutamine and lysine side chains, to covalently conjugate various small-molecule probes to recombinant proteins fused to a 6- or 7-amino acid transglutaminase recognition sequence, called a Q-tag. We demonstrate labeling of Q-tag fusion proteins both in vitro and on the surface of living mammalian cells with biotin, fluorophores, and a benzophenone photoaffinity probe.

View Article and Find Full Text PDF

We report the design and characterization of two genetically encoded fluorescent reporters of histone protein methylation. The reporters are four-part chimeric proteins consisting of a substrate peptide from the N-terminus of histone H3 fused to a chromodomain (a natural methyllysine-specific recognition domain), sandwiched between a fluorescence resonance energy transfer (FRET)-capable pair of fluorophores, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Enzymatic methylation by a methyltransferase induces complexation of the methylated substrate peptide to the chromodomain, changing the FRET level between the flanking CFP and YFP domains.

View Article and Find Full Text PDF