Publications by authors named "Chi-Wan Lim"

Right ventricular (RV) function is increasingly recognized to play an important role in the clinical status and long-term outcome in patients with congenital heart disease as well as ischemic cardiomyopathy with left ventricular dysfunction. However, quantification of RV characteristics and function are still challenging due to its complex morphology and its thin wall with coarse trabeculations. To assess RV functions quantitatively, establishing the patient-specific model from medical images is a prerequisite task.

View Article and Find Full Text PDF

We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.

View Article and Find Full Text PDF

One challenge in surgical simulation is to design stable deformable models to simulate the dynamics of organs synchronously. In this paper, we develop a novel mass-spring model on the tetrahedral meshes for soft organs such as the liver and gallbladder, which can stably deform with large time steps. We model the contact forces between the organs as a kind of forces generated by the tensions of repulsive springs connecting in between the organs.

View Article and Find Full Text PDF

This paper describes an automatic algorithm that uses a geometry-driven optimization approach to restore the shape of three-dimensional (3D) left ventricular (LV) models created from magnetic resonance imaging (MRI) data. The basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration and that the general shape characteristic of the LV is not altered. The Maximum Principle Curvature (k1) and the Minimum Principle Curvature (k2) of the LV epicardial surface are used to construct a shape-based optimization objective function to restore the shape of a motion-affected LV via a dual-resolution semi-rigid deformation process and a free-form geometric deformation process.

View Article and Find Full Text PDF

A computational method for quantifying left ventricle (LV) remodeling using 3D mesh models reconstructed from magnetic resonance imaging is proposed. The underlying geometry of the LV mesh is obtained by using a quadric fitting method, and its quantification is performed by using a curvedness shape descriptor. To achieve robustness, we have performed detailed studies of the effects of n-ring parameter selection on the accuracy of this method with in vitro and in vivo LV models.

View Article and Find Full Text PDF