Publications by authors named "Chi-Shun Ho"

Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina.

View Article and Find Full Text PDF

Neurons of the medial nucleus of the trapezoid body, which transmit auditory information that is used to compute the location of sounds in space, are capable of firing at high frequencies with great temporal precision. We found that elimination of the Kv3.1 gene in mice results in the loss of a high-threshold component of potassium current and failure of the neurons to follow high-frequency stimulation.

View Article and Find Full Text PDF

Fast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.

View Article and Find Full Text PDF

During the last few years a variety of genetically encodable optical probes that monitor physiological parameters such as local pH, Ca2+, Cl-, or transmembrane voltage have been developed. These sensors are based on variants of green-fluorescent protein (GFP) and can be synthesized by mammalian cells after transfection with cDNA. To use these sensor proteins in intact brain tissue, specific promoters are needed that drive protein expression at a sufficiently high expression level in distinct neuronal subpopulations.

View Article and Find Full Text PDF