Publications by authors named "Chi-Shiang Ke"

The differential diagnosis of estrogen receptor-positive (ER+) pathway-activated systems by using a labeled antiestrogen helps to select the patients for optimal response to endocrine therapy and to discontinue the treatment when resistance occurs. The authors' purpose was to synthesize chelator-tamoxifen conjugates for imaging ER (+) diseases. A hydroxypropyl linker was incorporated between either cyclam or cyclam diacetic acid and tamoxifen analog to produce SC-05-L-1 (Z-1-(1,4,8,11-tetraazacyclotetradecan-1-yl)-3-((5-(4-(2-(diethylamino)ethoxy)phenyl)-4,5-diphenylpent-4-en-1-yl)oxy)propan-2-ol) and SC-05-N-1 (Z-2,2'-(4-(3-((5-(4-(2-(diethylamino)ethoxy)phenyl)-4,5-diphenylpent-4-en-1-yl)oxy)-2-hydroxy-propyl)-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)diacetic acid), respectively.

View Article and Find Full Text PDF

This article describes the design and synthesis of donor-bridge-acceptor-based semiconducting polymer dots (Pdots) that exhibit narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region. We systematically investigated the effect of π-bridges on the fluorescence quantum yields of the donor-bridge-acceptor-based Pdots. The Pdots could be excited by a 488 or 532 nm laser and have a high fluorescence quantum yield of 33% with a Stokes shift of more than 200 nm.

View Article and Find Full Text PDF

Semiconducting polymer dots (Pdots) have recently been proven as a novel type of ultrabright fluorescent probes that can be extensively used in analytical detection. Here, we developed a dual visual sensor based on Pdots for fingerprint imaging. We first designed and synthesized two types of near-infrared (NIR) fluorescent polymers and then embedded ninhydrin into the Pdot matrix.

View Article and Find Full Text PDF

Semiconducting polymer dots (Pdots) recently have emerged as a new class of extraordinarily bright fluorescent probes with promising applications in biological imaging and sensing. Herein multicolor semiconducting polymer nanoparticles (Pdots) were designed using benzothiadiazole (BT) as the acceptor, and various types of donors were incorporated to modulate their emission wavelengths. Specific cellular targeting and in vivo biotoxicity as well as microangiography imaging on zebrafish indicated these BT-based Pdots are promising candidates for biological applications.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Chi-Shiang Ke"

  • Chi-Shiang Ke's research focuses on the development and application of semiconducting polymer dots (Pdots) for advanced imaging techniques, particularly in biological and medical contexts.
  • His work includes the synthesis of novel chelator-tamoxifen conjugates aimed at improving the imaging of estrogen receptor-positive diseases, potentially enhancing patient responses to endocrine therapies.
  • Additionally, Ke has explored the design of NIR-emitting Pdots with features such as ultrahigh brightness and large Stokes shifts, demonstrating their versatility for use in fingerprint imaging and in vivo biological imaging applications.