Publications by authors named "Chi-Ping Cheng"

Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein.

View Article and Find Full Text PDF

NbRabF1, a small GTPase from Nicotiana benthamiana and a homolog of Arabidopsis thaliana Ara6, plays a key role in regulating Bamboo mosaic virus (BaMV) movement by vesicle transport between endosomal membranes. Reducing the expression of NbRabF1 in N. benthamiana by virus-induced gene silencing decreased the accumulation of BaMV, and with smaller infection foci on inoculated leaves, but had no effect in protoplasts.

View Article and Find Full Text PDF

Background: Along with the rapid development of glycomic tools, the study of lectin-carbohydrate interactions has expanded, opening the way for applications in the fields of analytic, diagnostic, and drug delivery. Chitin-binding lectins (CBLs) play roles in immune defense against chitin-containing pathogens. CBLs from species of the Solanaceae family, such as tomato, potato and jimsonweed, display different binding specificities to sugar chains containing poly-N-acetyllactosamine.

View Article and Find Full Text PDF

Viruses move intracellularly to their replication compartments, and the newly synthesized viral complexes are transported to neighboring cells through hijacking of the host endomembrane systems. During these processes, numerous interactions occur among viral proteins, host proteins, and the cytoskeleton system. This review mainly focuses on the plant endomembrane network, which may be utilized by (BaMV) to move to its replication compartment, and summarizes the host factors that may be directly involved in delivering BaMV cargoes during intracellular movement.

View Article and Find Full Text PDF

The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up-regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up-regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

To investigate the plant genes affected by Bamboo mosaic virus (BaMV) infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL) gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) is an oncogenic γ-herpesvirus that capably establishes both latent and lytic modes of infection in host cells and causes malignant diseases in humans. Nuclear antigen 2 (EBNA2)-mediated transcription of both cellular and viral genes is essential for the establishment and maintenance of the EBV latency program in B lymphocytes. Here, we employed a protein affinity pull-down and LC-MS/MS analysis to identify nucleophosmin (NPM1) as one of the cellular proteins bound to EBNA2.

View Article and Find Full Text PDF

Epstein-Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine-Glycine repeat (RG) domain at amino acid positions 335-360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.

View Article and Find Full Text PDF

Satellite RNAs associated with Bamboo mosaic virus (satBaMVs) depend on BaMV for replication and encapsidation. Certain satBaMVs isolated from natural fields significantly interfere with BaMV replication. The 5' apical hairpin stem loop (AHSL) of satBaMV is the major determinant in interference with BaMV replication.

View Article and Find Full Text PDF

Background: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited.

View Article and Find Full Text PDF

Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny.

View Article and Find Full Text PDF

The satellite RNA of bamboo mosaic virus (satBaMV) has a single open reading frame encoding a non-structural protein, P20, which facilitates long-distance movement of satBaMV in BaMV and satBaMV co-infected plants. Immunohistochemistry and immunoelectron microscopy revealed that the P20 protein accumulated in the cytoplasm and nuclei in co-infected cells. P20 and the helper virus coat protein (CP) were highly similar in their subcellular localization, except that aggregates of BaMV virions were not labelled with anti-P20 serum.

View Article and Find Full Text PDF

Rapid RNA virus evolution is a major problem due to the devastating diseases caused by human, animal and plant-pathogenic RNA viruses. A previous genome-wide screen for host factors affecting recombination in Tomato bushy stunt tombusvirus (TBSV), a small monopartite plant virus, identified Xrn1p 5'-3' exoribonuclease of yeast, a model host, whose absence led to increased appearance of recombinants [Serviene, E., Shapka, N.

View Article and Find Full Text PDF

RNA viruses of humans, animals, and plants evolve rapidly due to mutations and RNA recombination. A previous genome-wide screen in Saccharomyces cerevisiae, a model host, identified five host genes, including XRN1, encoding a 5'-3' exoribonuclease, whose absence led to an approximately 10- to 50-fold enhancement of RNA recombination in Tomato bushy stunt virus (E. Serviene, N.

View Article and Find Full Text PDF

RNA recombination is a major process in promoting rapid virus evolution in an infected host. A previous genome-wide screen with the yeast single-gene deletion library of 4,848 strains, representing approximately 80% of all genes of yeast, led to the identification of 11 host genes affecting RNA recombination in Tomato bushy stunt virus (TBSV), a small model plant virus (E. Serviene, N.

View Article and Find Full Text PDF

The viral RNA plays multiple roles during replication of RNA viruses, serving as a template for complementary RNA synthesis and facilitating the assembly of the viral replicase complex. These roles are coordinated by cis-acting regulatory elements, such as promoters and replication enhancers (REN). To test if these RNA elements can be used by related viral RNA-dependent RNA polymerases (RdRp), we compared the potential stimulatory effects of homologous and heterologous REN elements on complementary RNA synthesis and template-switching by the tombus- (Cucumber necrosis virus, CNV), carmovirus (Turnip crinkle virus, TCV) and hepatitis C virus (HCV) RdRps in vitro.

View Article and Find Full Text PDF

Rapid evolution of RNA viruses with mRNA-sense genomes is a major concern to health and economic welfare because of the devastating diseases these viruses inflict on humans, animals, and plants. To test whether host genes can affect the evolution of RNA viruses, we used a Saccharomyces cerevisiae single-gene deletion library, which includes approximately 80% of yeast genes, in RNA recombination studies based on a small viral replicon RNA derived from tomato bushy stunt virus. The genome-wide screen led to the identification of five host genes whose absence resulted in the rapid generation of new viral RNA recombinants.

View Article and Find Full Text PDF

RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus.

View Article and Find Full Text PDF