Publications by authors named "Chi-Ho Ngan"

Peptide-mediated interactions, in which a short linear motif binds to a globular domain, play major roles in cellular regulation. An accurate structural model of this type of interaction is an excellent starting point for the characterization of the binding specificity of a given peptide-binding domain. A number of different protocols have recently been proposed for the accurate modeling of peptide-protein complex structures, given the structure of the protein receptor and the binding site on its surface.

View Article and Find Full Text PDF

Formaldehyde has long been recognized as a hazardous environmental agent highly reactive with DNA. Recently, it has been realized that due to the activity of histone demethylation enzymes within the cell nucleus, formaldehyde is produced endogenously, in direct vicinity of genomic DNA. Should it lead to extensive DNA damage? We address this question with the aid of a computational mapping method, analogous to X-ray and nuclear magnetic resonance techniques for observing weakly specific interactions of small organic compounds with a macromolecule in order to establish important functional sites.

View Article and Find Full Text PDF

Binding hot spots, protein sites with high-binding affinity, can be identified using X-ray crystallography or NMR by screening libraries of small organic molecules that tend to cluster at such regions. FTMAP, a direct computational analog of the experimental screening approaches, globally samples the surface of a target protein using small organic molecules as probes, finds favorable positions, clusters the conformations and ranks the clusters on the basis of the average energy. The regions that bind several probe clusters predict the binding hot spots, in good agreement with experimental results.

View Article and Find Full Text PDF

Fragment-based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high-affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency.

View Article and Find Full Text PDF

Motivation: Binding site identification is a classical problem that is important for a range of applications, including the structure-based prediction of function, the elucidation of functional relationships among proteins, protein engineering and drug design. We describe an accurate method of binding site identification, namely FTSite. This method is based on experimental evidence that ligand binding sites also bind small organic molecules of various shapes and polarity.

View Article and Find Full Text PDF

Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions.

View Article and Find Full Text PDF

The aim of this article is to analyze conformational changes by comparing 10 different structures of Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase (PMM/PGM), a four-domain enzyme in which both substrate binding and catalysis require substantial movement of the C-terminal domain. We focus on changes in interdomain and active site crevices using a method called computational solvent mapping rather than superimposing the structures. The method places molecular probes (i.

View Article and Find Full Text PDF

The steroid and xenobiotic-responsive human pregnane X receptor (PXR) binds a broad range of structurally diverse compounds. The structures of the apo and ligand-bound forms of PXR are very similar, in contrast to most promiscuous proteins that generally adapt their shape to different ligands. We investigated the structural origins of PXR's recognition promiscuity using computational solvent mapping, a technique developed for the identification and characterization of hot spots, i.

View Article and Find Full Text PDF

The influenza virus subtype H5N1 has raised concerns of a possible human pandemic threat because of its high virulence and mutation rate. Although several approved anti-influenza drugs effectively target the neuraminidase, some strains have already acquired resistance to the currently available anti-influenza drugs. In this study, we present the synergistic application of extended explicit solvent molecular dynamics (MD) and computational solvent mapping (CS-Map) to identify putative 'hot spots' within flexible binding regions of N1 neuraminidase.

View Article and Find Full Text PDF