Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water, which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously demonstrated to be capable of simulating both strong and fragile glasses [C.
View Article and Find Full Text PDFCorrection for 'Surface mobility gradient and emergent facilitation in glassy films' by Qiang Zhai , , 2024, https://doi.org/10.1039/D4SM00221K.
View Article and Find Full Text PDFConfining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films.
View Article and Find Full Text PDFThe nature of glassy states in realistic finite dimensions is still under fierce debate. Lattice models can offer valuable insights and facilitate deeper theoretical understanding. Recently, a disordered-interacting lattice model with distinguishable particles in two dimensions (2D) has been shown to produce a wide range of dynamical properties of structural glasses, including the slow and heterogeneous characteristics of the glassy dynamics, various fragility behaviors of glasses, and so on.
View Article and Find Full Text PDFAtomic description of electrochemical systems requires reactive interaction potential to explicitly describe the chemistry between atoms and molecules and the evolving charge distribution and polarization effects. Calculating Coulomb electrostatic interactions and polarization effects requires a better estimate of the partial charge distribution in molecular systems. However, models such as reactive force fields and charge equilibration (QEq) include Coulomb interactions up to a short-distance cutoff for better computational speeds.
View Article and Find Full Text PDFParticle swaps can drastically accelerate dynamics in glass. The mechanism is expected to be vital for a fundamental understanding of glassy dynamics. To extract defining features, we propose a partial swap model with a fraction ϕ_{s} of swap-initiating particles, which can only swap locally with each other or with regular particles.
View Article and Find Full Text PDFThe greatest challenge that limits the application of pyro-catalytic materials is the lack of highly frequent thermal cycling due to the enormous heat capacity of ambient environment, resulting in low pyro-catalytic efficiency. Here, we introduce localized plasmonic heat sources to rapidly yet efficiently heat up pyro-catalytic material itself without wasting energy to raise the surrounding temperature, triggering a significantly expedited pyro-catalytic reaction and enabling multiple pyro-catalytic cycling per unit time. In our work, plasmonic metal/pyro-catalyst composite is fabricated by in situ grown gold nanoparticles on three-dimensional structured coral-like BaTiO nanoparticles, which achieves a high hydrogen production rate of 133.
View Article and Find Full Text PDFUsing a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to the strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for glass transition.
View Article and Find Full Text PDFThe specific-heat capacity c_{v} of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger c_{v} and a more pronounced hysteresis for fragile glasses than for strong ones. Here we show that these experimental features, including the unusually large magnitude of c_{v} of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model incorporating a two-state picture of particle interactions. The large c_{v} in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.
View Article and Find Full Text PDFWe perform kinetic Monte Carlo simulations of a distinguishable-particle lattice model of structural glasses with random particle interactions. By varying the interaction distribution and the average particle hopping energy barrier, we obtain an extraordinarily wide range of kinetic fragility. A stretching exponent, characterizing structural relaxation, is found to decrease with the kinetic fragility in agreement with experiments.
View Article and Find Full Text PDFParticle dynamics in supercooled liquids are often dominated by stringlike motions in which lines of particles perform activated hops cooperatively. The structural features triggering these motions, crucial in understanding glassy dynamics, remain highly controversial. We experimentally study microscopic particle dynamics in colloidal glass formers at high packing fractions.
View Article and Find Full Text PDFVolume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs' seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counterintuitively, the expansion gap paradox, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2019
In this study, mechanical vibration is used for hydrogen generation and decomposition of dye molecules, with the help of BiFeO (BFO) square nanosheets. A high hydrogen production rate of ≈124.1 μmol g is achieved under mechanical vibration (100 W) for 1 h at the resonant frequency of the BFO nanosheets.
View Article and Find Full Text PDFThe dynamics of interfacial slippage of entangled polystyrene (PS) films on an adsorbed layer of polydimethylsiloxane on silicon was studied from the surface capillary dynamics of the films. By using PS with different molecular weights, we observed slippage of the films in the viscoelastic liquid and rubbery solid state, respectively. Remarkably, all our data can be explained by the linear equation, J=-M∇P and a single friction coefficient, ξ, where J is the unit-width current, M is mobility, and P is Laplace pressure.
View Article and Find Full Text PDFFree surfaces in glassy polymer films are known to induce surface mobile layers with enhanced dynamics. Using molecular dynamics simulations of a bead-spring model, we study a wide variety of layer-resolved structural and dynamical properties of polymer films equilibrated at a low temperature. Surface enhancement on thermally induced particle hopping rates is found to terminate abruptly only about 5 particle diameters from the free surface.
View Article and Find Full Text PDFWe investigate the electronic and transport properties of vanadium-doped zigzag blue phosphorus nanoribbons by first-principles quantum transport calculations. We study the spin-dependent transport properties and obtain current-voltage curves showing obvious spin polarization and negative differential behaviors. These interesting transport behaviors can be explained by the band structure of the vanadium-doped zigzag blue phosphorus nanoribbons.
View Article and Find Full Text PDFWe investigate the electronic and magnetic properties of substitutional metal atom impurities in two-dimensional (2D) blue phosphorene nanoribbons using first-principles calculations. In impure zigzag blue phosphorene nanoribbons (zBPNRs), a metal atom substitutes for a P atom at position "A/B". The V-"B"structure shows half-metallic properties, while the Mn-"A/B", V-"A", Fe-"B", and Cr-"A/B" structures show magnetic semiconductor properties.
View Article and Find Full Text PDFThe dynamics of many glassy systems are known to exhibit string-like hopping motions each consisting of a line of particles displacing one another. By using the molecular dynamics simulations of glassy polymers, we show that these motions become highly repetitive back-and-forth motions as temperature decreases and do not necessarily contribute to net displacements. Particle hops which constitute string-like motions are reversed with a high probability, reaching 73% and beyond at low temperature.
View Article and Find Full Text PDFWith a similar electronic structure as that of platinum, molybdenum carbide (MoC) holds significant potential as a high performance catalyst across many chemical reactions. Empirically, the precise control of particle size, shape, and surface nature during synthesis largely determines the catalytic performance of nanoparticles, giving rise to the need of clarifying the underlying growth characteristics in the nucleation and growth of MoC. However, the high-temperature annealing involved during the growth of carbides makes it difficult to directly observe and understand the nucleation and growth processes.
View Article and Find Full Text PDFA microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy.
View Article and Find Full Text PDFWe propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state.
View Article and Find Full Text PDFThe refractive index sensing properties of plasmonic resonances in gold nanoparticles (nanorods and nanobipyramids) are investigated through numerical simulations. We find that the quadruple resonance in both nanoparticles shows much higher sensing figure of merit (FOM) than its dipolar counterpart, which is attributed mainly to the reduction in resonance linewidth. More importantly, our results predict that at the same sensing wavelength, the sensing FOM of the quadrupole mode can be significantly boosted from 3.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We study the driven flow of an unentangled glassy polymer film with a free upper surface and supported below by a substrate using nonequilibrium molecular dynamics simulations based on a bead-spring model. Above the glass transition temperature T(g), simple Poiseuille laminar flow is observed with the film mobility defined as the flow current density per unit pressure gradient scaling as h(3) with the film thickness h. Below T(g), the film mobility becomes independent of h, signifying surface transport.
View Article and Find Full Text PDFFull counting statistics of electron transport is of fundamental importance for a deeper understanding of the underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the counting statistics of a biased double quantum dot (DQD).
View Article and Find Full Text PDF