Publications by authors named "Chi-Fu Hsia"

CuO cubes, octahedra, and rhombic dodecahedra can be pseudomorphically converted into Cu crystals of corresponding shapes through reduction by ammonia borane in ethanol at 50 °C or below within 3 min, demonstrating the feasibility of making challenging polyhedral metal particles from metal oxide crystals. Hydrogen gas is also produced from ammonia borane in the process. The obtained Cu crystals have a slightly nanoporous interior.

View Article and Find Full Text PDF

Copper nanocubes with average sizes of 82, 95, and 108 nm have been synthesized in an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, copper acetate, and sodium ascorbate reductant heated at 100 °C for 40 min. Copper nanowires with an average length of 25 μm can also be prepared this way by simply increasing the volume of sodium ascorbate introduced. Small shifts in the plasmonic absorption band positions with tunable particle sizes have been observed.

View Article and Find Full Text PDF

Au-Cu core-shell nanocubes and octahedra synthesized in aqueous solution were employed to catalyze a 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 °C for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of a regioselective 1,4-triazole product, while octahedra only recorded 46% yield. The Au-Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes.

View Article and Find Full Text PDF

Ag O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet-dependent electrical conductivity behaviors have been observed.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how different shapes of Cu2 O crystals, when decorated with gold particles, affect their photocatalytic activity, which is important for breaking down pollutants like methyl orange.
  • The research found that rhombic dodecahedra and octahedra of Cu2 O with gold showed significantly better degradation rates due to improved separation of electrons and holes, while cubes were ineffective.
  • Unique findings from X-ray and electron resonance measurements suggest that the Cu2 O {100} facet has a high energy barrier that hampers effective photocatalysis, indicating that these shape-dependent behaviors could apply to other semiconductor materials as well.
View Article and Find Full Text PDF

Size-tunable small to ultrasmall Cu2 O nanocubes and octahedra are synthesized in aqueous solution without the introduction of any surfactant. These nanocrystals provide strong evidence of the existence of facet-dependent optical absorption properties of Cu2 O nanoparticles, showing nanocubes always have a more redshifted absorption band than that of octahedra having a similar volume by about 15 nm.

View Article and Find Full Text PDF

Au-Pd core-shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar-sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen-evolution reaction (HER) from ammonia borane.

View Article and Find Full Text PDF