Uniform-size, non-native oxide-passivated metallic aluminum nanoparticles (Al NPs) have desirable properties for fuel applications, battery components, plasmonics, and hydrogen catalysis. Nonthermal plasma-assisted synthesis of Al NPs was previously achieved with an inductively coupled plasma (ICP) reactor, but the low production rate and limited tunability of particle size were key barriers to the applications of this material. This work focuses on the application of capacitively coupled plasma (CCP) to achieve improved control over Al NP size and a ten-fold increase in yield.
View Article and Find Full Text PDFChemical energy ferroelectrics are generally solid macromolecules showing spontaneous polarization and chemical bonding energy. These materials still suffer drawbacks, including the limited control of energy release rate, and thermal decomposition energy well below total chemical energy. To overcome these drawbacks, we report the integrated molecular ferroelectric and energetic material from machine learning-directed additive manufacturing coupled with the ice-templating assembly.
View Article and Find Full Text PDFInterfacial adhesion dictates properties and performance of both composites and adhesively bonded structures. Weak adhesion at the interfaces of polymer composites leads to void formation and debonding, which adversely affect composite structural integrity and mechanical performance. This work investigated the relationship between surface wettability and interfacial fracture energy with the goal of tailoring interfacial adhesion within polymer composites.
View Article and Find Full Text PDFChemically driven thermal wave triggers high energy release rate in covalently-bonded molecular energetic materials. Molecular ferroelectrics bridge thermal wave and electrical energy by pyroelectric associated with heating frequency, thermal mass and heat transfer. Herein we design energetic molecular ferroelectrics consisting of imidazolium cations (energetic ion) and perchlorate anions (oxidizer), and describe its thermal wave energy conversion with a specific power of 1.
View Article and Find Full Text PDFMetallic nanoparticles of aluminum (Al), a nontoxic and earth-abundant element, are relevant to plasmonic and energetic applications. However, monodisperse Al nanoparticles are difficult to synthesize using all gas-phase approaches, especially in the 10 to 20 nm size range; yet, many applications require particles of this size due to their enhanced properties. Here, an inductive nonthermal plasma reactor fed with aluminum trichloride (AlCl) and Ar is used to synthesize single-crystal aluminum nanoparticles.
View Article and Find Full Text PDFOptical ignition of solid energetic materials, which can rapidly release heat, gas, and thrust, is still challenging due to the limited light absorption and high ignition energy of typical energetic materials ( e.g., aluminum, Al).
View Article and Find Full Text PDFA new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the AlO passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales.
View Article and Find Full Text PDFIntestinal ischemia/reperfusion (I/R) induces mucosal barrier dysfunction and bacterial translocation (BT). Neutrophil-derived oxidative free radicals have been incriminated in the pathogenesis of ischemic injury in various organs, but their role in the bacteria-containing intestinal tract is debatable. Primed neutrophils are characterized by a faster and higher respiratory burst activity associated with more robust bactericidal effects on exposure to a second stimulus.
View Article and Find Full Text PDFBackground: Bowel obstruction is a common cause of abdominal emergency, since the patients are at increased risk of septicemia resulting in high mortality rate. While the compartmentalized changes in enteric microfloral population and augmentation of bacterial translocation (BT) have already been reported using experimental obstruction models, alterations in epithelial permeability of the obstructed guts has not been studied in detail. Myosin light chain kinase (MLCK) is actively involved in the contraction of epithelial perijunctional actinomyosin ring and thereby increases paracellular permeability.
View Article and Find Full Text PDFAminocarboxylate complexes of vanadium(III) are of interest as models for biologically and medicinally relevant forms of this interesting and somewhat neglected ion. The V(III) ion is paramagnetic, but not readily suited to conventional EPR, due to its integer-spin ground state (S=1) and associated large zero-field splitting (zfs). High-frequency and -field EPR (HFEPR), however, has the ability to study such systems effectively.
View Article and Find Full Text PDFVanadium(III) thiolate complexes, [V(PS3'')(Cl)]- [1a; PS3'' = P(C6H3-3-Me3Si-2-S)3(3-)] and [V(PS3')(Cl)]- [1b; PS3' = P(C6H3-5-Me-2-S)3(3-)], were synthesized and characterized. Complex 1a serves as a precursor for the catalytic reduction of hydrazine to ammonia. The spectroscopic and electrochemical studies indicate that hydrazine is bound and activated in a V(II) state.
View Article and Find Full Text PDF