Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae.
View Article and Find Full Text PDFMost of Gram-positive bacteria anchor surface proteins to the peptidoglycan cell wall by sortase, a cysteine transpeptidase that targets proteins displaying a cell wall sorting signal. Unlike other bacteria, , the major human pathogen responsible for antibiotic-associated diarrhea, has only a single functional sortase (SrtB). Sortase's vital importance in bacterial virulence has been long recognized, and sortase B (Cd-SrtB) has become an attractive therapeutic target for managing infection.
View Article and Find Full Text PDFAs cancer cells undergo metabolic reprogramming in the course of tumorigenesis, targeting energy metabolism represents a promising strategy in cancer therapy. Among various metabolic enzymes examined, pyruvate kinase M2 type (PKM2) has received much attention in light of its multifaceted function in promoting tumor growth and progression. In this study, we reported the development of a novel irreversible inhibitor of PKM2, compound , that exhibits a differential tumor-suppressive effect among an array of cancer cell lines.
View Article and Find Full Text PDFAfatinib, used for the first-line treatment of non-small-cell lung carcinoma (NSCLC) patients with distinct epidermal growth factor receptor (EGFR) mutations, inactivates EGFR by mimicking ATP structure and forming a covalent adduct with EGFR. We developed a method to unravel potential targets of afatinib in NSCLC cells through immunoprecipitation of afatinib-labeling proteins with anti-afatinib antiserum and mass spectrometry analysis. Ribonucleotide reductase (RNR) is one of target proteins of afatinib revealed by this method.
View Article and Find Full Text PDFPhenyl vinyl sulfone (PVS) and phenyl vinyl sulfonate (PVSN) inactivate protein tyrosine phosphatases (PTPs) by mimicking the phosphotyrosine structure and providing a Michael addition acceptor for the active-site cysteine residue of PTPs, thus forming covalent adducts between PVS (or PVSN) and PTPs. We developed a specific antiserum against PVS. This antiserum can be used in general antibody-based assays such as immunoblotting, immunofluorescence staining, and immunoprecipitation.
View Article and Find Full Text PDFLysine acetylation is a prevalent post-translational modification in both eukaryotes and prokaryotes. Whereas this modification is known to play pivotal roles in eukaryotes, the function and extent of this modification in prokaryotic cells remain largely unexplored. Here we report the acetylome of a pair of antibiotic-sensitive and -resistant nosocomial pathogen SK17-S and SK17-R.
View Article and Find Full Text PDFMethanogens have gained much attention for their metabolic product, methane, which could be an energy substitute but also contributes to the greenhouse effect. One factor that controls methane emission, reversible protein phosphorylation, is a crucial signaling switch, and phosphoproteomics has become a powerful tool for large-scale surveying. Here, we conducted the first phosphorylation-mediated regulation study in halophilic Methanohalophilus portucalensis FDF1(T), a model strain for studying stress response mechanisms in osmoadaptation.
View Article and Find Full Text PDFProtein phosphorylation plays an important role in regulating soluble L-glutamic acid decarboxylase (GAD) and membrane-associated GAD activity. Previously, we reported the effect of phosphorylation on the two well-defined GAD isoforms, namely, GAD65 and GAD67, using highly purified preparations of recombinant human brain GAD65 (hGAD65) and GAD67. GAD65 was activated by phosphorylation, while GAD67 was inhibited by phosphorylation.
View Article and Find Full Text PDFNosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R.
View Article and Find Full Text PDFWe have previously developed the enabling techniques for sulfoglycomics based on mass spectrometry (MS) analysis of permethylated glycans, which preserves the attractive features of more reliable MS/MS sequencing compared with that performed on native glycans, while providing an easy way to separate and hence enrich the sulfated glycans. Unlike LC-MS/MS analysis of native glycans in negative ion mode that has been more widely in use, the characteristics and potential benefits of similar applications based on permethylated sulfated glycans have not been fully investigated. We report here the important features of reverse phase-based nanoLC-MS/MS analysis of permethylated sulfated glycans in negative ion mode and demonstrate that complementary sets of diagnostic fragment ions afforded can allow rapid identification of various fucosylated, sialylated, sulfated glycotopes and definitive determination of the location of sulfate in a way difficult to achieve by other means.
View Article and Find Full Text PDFCysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine.
View Article and Find Full Text PDFThe polyamines spermidine and spermine, and their precursor putrescine, have been shown to play an important role in cell migration, proliferation, and differentiation. Because of their polycationic property, polyamines are traditionally thought to be involved in DNA replication, gene expression, and protein translation. However, polyamines can also be covalently conjugated to proteins by transglutaminase 2 (TG2).
View Article and Find Full Text PDFProtein S-glutathionylation is a reversible post-translational modification widely implicated in redox regulated biological functions. Conventional biochemical methods, however, often do not allow such a mixed disulfide modification to be reliably identified on specific cysteine residues or be distinguished from other related oxidized forms. To develop more efficient mass spectrometry (MS)-based analytical strategies for this purpose, we first investigated the MS/MS fragmentation pattern of S-glutathionylated peptides under various dissociation modes, including collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD), using synthetic peptides derived from protein tyrosine phosphatase as models.
View Article and Find Full Text PDFProtein serotonylation is a transglutaminase-mediated phenomenon whose biological mechanism of protein serotonylation is not yet fully understood, as the complete profiling of serotonylation targets in a proteome remains a critical challenge to date. Utilizing an alkyne-functionalized serotonin derivative bioorthogonally coupled to a cleavable linker, we developed a method to selectively enrich serotonylated proteins in a complex sample. With online nanoflow liquid chromatography and LTQ-Orbitrap Velos hybrid mass spectrometer detection, we identified 46 proteins with 50 serotonylation sites at their glutamine residues.
View Article and Find Full Text PDFOverproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.
View Article and Find Full Text PDFUnlabelled: Leukocyte cell-derived chemotoxin 2 (LECT2) has been shown to act as a tumor suppressor in hepatocellular carcinoma (HCC). However, the underlying mechanism has not yet been completely defined. Here, we employ a LECT2-affinity column plus liquid chromatography coupled with tandem mass spectrometry to identify LECT2-binding proteins and found that MET receptor strongly interacted with LECT2 protein.
View Article and Find Full Text PDFEosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor.
View Article and Find Full Text PDFDon't interrupt! Protein serotonylation has been implicated in living cells, yet its role remains poorly defined because of the lack of characterization tools. We synthesized a serotonin derivative to enable selective tagging of serotonylation and to investigate its effect on Ras; the latter displayed undisrupted interaction with Raf-1 at the Ras binding domain.
View Article and Find Full Text PDFIn an effort to prime our mass spectrometry (MS)-based sulfoglycomic mapping platform technology for facile identification of sulfated lacdiNAc (GalNAcβ1-4GlcNAcβ1-), we have re-examined the N-glycans of bovine thyroid stimulating hormone. We showed that MALDI-MS mapping of permethylated glycans in negative ion mode can give an accurate representation of the sulfated glycans and, through MS/MS, diagnostic ions can be derived that we can collectively define the presence of a terminal sulfated lacdiNAc moiety at high sensitivity. Based on these ions, which can also be produced by nanoESI-MS(n), we demonstrated that the glycome of an ovarian carcinoma cell line, RMG-1, comprises a high abundance of sulfated lacdiNAc epitopes carried on multiantennary complex type N-glycans alongside fucosylated, sialylated and/or sulfated lacNAc antennae.
View Article and Find Full Text PDFA humanized monoclonal antibody raised against human ovarian cancer RMG-I cells and designated as HMOCC-1 (Suzuki, N., Aoki, D., Tamada, Y.
View Article and Find Full Text PDFAutophagy is a conserved, degradative process that has been implicated in a number of human diseases and is a potential target for therapeutic intervention. It is therefore important that we develop a thorough understanding of the mechanisms regulating this trafficking pathway. The Atg1 protein kinase is a key element of this control as a number of signaling pathways target this enzyme and its associated protein partners.
View Article and Find Full Text PDFRosiglitazone is a potent synthetic peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist which improves glucose control in the plasma and reduces ischemic brain injury. However, the pharmacokinetics of rosiglitazone in the brain is still unclear. In this study, a method using liquid chromatography-mass spectrometry coupled with microdialysis and an auto-blood sampling system was developed to determine rosiglitazone and glucose concentration in the brain and blood of gerbils subjected to treatment with rosiglitazone (3.
View Article and Find Full Text PDFCertain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated.
View Article and Find Full Text PDFProtein phosphorylation is a type of posttranslational modification which plays an important role in cell regulation and signal transduction. Because of its biological relevance, a considerable amount of interest has been paid to the development of efficient techniques for phosphopeptide analysis. Although advances in MS control have enabled the high-throughput discovery of proteins from limited amounts of sample, automated selection of MS/MS precursor ions based on intensity alone can significantly hamper the detection of low-abundance phosphopeptides.
View Article and Find Full Text PDF