The pentose-fermenting yeast Pachysolen tannophilus can convert glucose and xylose in lignocellulosic hydrolysates to ethanol. However, it performs poorly in industrially relevant lignocellulosic hydrolysates containing mixed sugars and inhibitors. Efforts have been directed at improving the performance of this yeast to enable efficient lignocellulosic biomass conversion.
View Article and Find Full Text PDFThe plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves.
View Article and Find Full Text PDFNeuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID.
View Article and Find Full Text PDFGenome shuffling was used to obtain Pachysolen tannophilus mutants with improved tolerance to inhibitors in hardwood spent sulfite liquor (HW SSL). Genome shuffled strains (GHW301, GHW302 and GHW303) grew at higher concentrations of HW SSL (80 % v/v) compared to the HW SSL UV mutant (70 % v/v) and the wild-type (WT) strain (50 % v/v). In defined media containing acetic acid (0.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
June 2015
A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted.
View Article and Find Full Text PDFBackground: The zebrafish genetic mutant iguana (igu) has defects in the ciliary basal body protein Dzip1, causing improper cilia formation. Dzip1 also interacts with the downstream transcriptional activators of Hedgehog (Hh), the Gli proteins, and Hh signaling is disrupted in igu mutants. Hh governs a wide range of developmental processes, including stabilizing developing blood vessels to prevent hemorrhage.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2015
Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient.
View Article and Find Full Text PDFExpansin and expansin-related proteins loosen plant cell wall architectures and are widely distributed in several types of organisms, including plants, fungi and bacteria. Here we describe sequence diversity and unique gene expression profiles of multiple expansin-related proteins identified in the basidiomycete, Phanerochaete carnosa. The protein sequences were homologous to loosenin, an expansin-related protein reported in the basidiomycete, Bjerkandera adusta.
View Article and Find Full Text PDFProtein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions) and site multiplicity (backup and status quo) might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P) N-glycosylation sites.
View Article and Find Full Text PDFGlobal gene expression was analyzed in Saccharomyces cerevisiae T2 cells grown in the presence of hardwood spent sulphite liquor (HW SSL) and each of the three main inhibitors in HW SSL, acetic acid, hydroxymethyfurfural (HMF) and furfural, using a S. cerevisiae DNA oligonucleotide microarray. The objective was to compare the gene expression profiles of T2 cells in response to the individual inhibitors against that elicited in response to HW SSL.
View Article and Find Full Text PDFBackground: Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses.
Methodology/principal Findings: Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes.
Reverse transcription PCR (RT-PCR) is prone to false positives when contaminating DNA molecules are present at the start of a reaction. Contaminants that derive from earlier work using a given primer pair (carryover PCR products) are of particular concern when those primers are used routinely, as in clinical diagnostics or environmental monitoring. In addition, contamination by genomic DNA can significantly interfere with quantitative and qualitative analysis of RNAs by RT-PCR.
View Article and Find Full Text PDF