Publications by authors named "Chi Ming Yam"

Micro- and nanopatterns of biomolecules on inert, ultrathin platforms on nonoxidized silicon are ideal interfaces between silicon-based microelectronics and biological systems. We report here the local oxidation nanolithography with conductive atomic force microscopy (cAFM) on highly protein-resistant, oligo(ethylene glycol) (OEG)-terminated alkyl monolayers on nonoxidized silicon substrates. We propose a mechanism for this process, suggesting that it is possible to oxidize only the top ethylene glycol units to generate carboxylic acid and aldehyde groups on the film surface.

View Article and Find Full Text PDF

We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Monolayers of giant, tripod-shaped molecules 1 with each tripod leg composed of seven phenylene units end-capped with a triallylsilyl group were prepared on hydrogen-terminated silicon surfaces (H-Si(111)) via thermally induced surface hydrosilylation. The films were characterized by ellipsometry, contact-angle goniometry, and X-ray photoelectron spectroscopy (XPS). The measured ellipsometric thickness of 24 Angstrom of the films suggests anchoring of 1 on the substrate surface with a tripod orientation of high coverage.

View Article and Find Full Text PDF

Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS) was successively used to monitor the covalent immobilization of biotin molecules onto a planar gold substrate covered with a self-assembled monolayer of cystamine and to transduce the molecular recognition of avidin and biotin. This detection was greatly facilitated and made selective by the labeling of avidin and of biotin with various transition metal carbonyl probes. The binding of avidin to the surface was optimized by blocking the nonspecific binding sites by adsorption of an unrelated protein, bovine serum albumin.

View Article and Find Full Text PDF

Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)).

View Article and Find Full Text PDF

We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.

View Article and Find Full Text PDF

Oligo(ethylene glycol)-terminated thin films were prepared by photo-induced hydrosilylation of alpha-hepta-(ethylene glycol) methyl omega-undecenyl ether (EG(7)) on hydrogen-terminated silicon (111) and (100) surfaces. Their resistance to protein adsorption, and stabilities (from hours to days) under a wide variety of conditions, such as air, water, biological buffer, acid, and base, were investigated using contact-angle goniometry and ellipsometry techniques. Results indicated higher stability of the films chemisorbed on Si(111) than on Si(100).

View Article and Find Full Text PDF

Multidentate carbosilane films were prepared by thermally induced hydrosilylation of allyl-terminated carbosilane dendrons of generations 0, 1, and 2 (G0-G2) on hydrogen-terminated silicon(111) surfaces. The dendron molecules contain three (G0), nine (G1), and twenty-seven (G2) allyl groups at the periphery, and a bromophenyl functional group at the focal point. The dendron films were characterized by contact-angle goniometry, ellipsometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Atomically flat, homogeneous, and protein-resistant monolayers can be readily prepared on H-Si(111) surfaces by photo-induced hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes.

View Article and Find Full Text PDF

We present a novel approach for preparation of nanometric protein arrays, based on binding of avidin molecules to nanotemplates generated by conductive AFM lithography on robust oligo(ethylene glycol)-terminated monolayers on silicon (111) surfaces that are protein-resistant. We showed that only biotinated-BSA but not the native BSA bind to the avidin arrays and that the resulting arrays of biotinated BSA could bind avidin to form protein dots with a feature size of approximately 30 nm. This result demonstrates that the avidin array may serve as templates for preparation of nanoarrays of a wide variety of biotin-tagged proteins for studying their interactions with other protein molecules at nanoscale.

View Article and Find Full Text PDF

We demonstrate that silicon AFM tips can be modified by etching with 2% HF solution followed by reaction with an alpha,omega-oligo(ethylene glycol)alkene. Tips properly modified by this technique maintain a small tip size and effectively reduce the nonspecific interaction with fibrinogen and bovine serum albumin, resulting in greatly improved image resolution and contrast for high-coverage fibrinogen films.

View Article and Find Full Text PDF

As part of our project of developing a new IR-based immunosensor, we investigated the functionalization of gold substrates with thin organic films containing biotin ligands. A two-step procedure was developed consisting of the chemisorption of short amine-terminated organosulfur compounds, followed by their reaction at the solid liquid interface with an activated ester derivative of biotin. Covalent binding of biotin to these attachment layers was assessed by Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF