Background: The prevalence of obesity is increasing worldwide. Oxidative stress plays an etiological role in a variety of obesity-related metabolic disorders. 4-hydroxynonenal (4-HNE) is the most abundant and reactive aldehydic product derived from the peroxidation of n-6 polyunsaturated fatty acids with diverse biological effects that are not well detailed.
View Article and Find Full Text PDFObesity is characterized by an accumulation of excessive body fat and can be diagnosed by a variety of measures, such as BMI. However, in some obese individuals, oxidative stress is also thought to be an important pathogenic mechanism of obesity-associated metabolic syndrome. Oxidative stress increases the lipid peroxidation product, 4-hydroxynonenal (4-HNE), which is one of the most abundant and active lipid peroxides.
View Article and Find Full Text PDFObjective: Obesity is primarily characterized by the accumulation of large amounts of fat in adipose tissue. Within the adipose tissue, adipocytes are derived from adipose tissue-derived stromal cells (ADSCs) via a specialized cell lineage differentiation process, and ADSCs play a key role in the generation and metabolism of adipose tissue. This study investigated whether microRNAs (miRNAs) play a role in adipocyte differentiation.
View Article and Find Full Text PDFPurpose: Clinical trials have studied the use of soy protein for treating type 2 diabetes (T2D) and metabolic syndrome (MS). The purpose of this study was to outline evidence on the effects of soy protein supplementation on clinical indices in T2D and MS subjects by performing a meta-analysis of randomized controlled trials (RCTs).
Materials And Methods: We searched PubMed, EMBASE, and Cochrane databases up to March 2015 for RCTs.
Background: Obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of metabolic syndrome (MS). Recently, a growing body of evidence supports that miRNAs are largely dysregulated in obesity and that specific miRNAs regulate obesity-associated inflammation. We applied an approach aiming to identify active miRNA-TF-gene regulatory pathways in obesity.
View Article and Find Full Text PDFThe accelerated migration of Langerhans cells (LCs) out of the epidermis and up-regulation of maturation markers, upon treatment with subtoxic concentrations of chemicals, were used as the criteria to determine the potential of allergenic chemicals capable of inducing a hapten-specific delayed-type hypersensitivity reaction. Here we report the findings of a study in which seven chemicals, coded and tested in a blind fashion, were classified as contact allergens or non-allergens using the human organotypic skin explant culture (hOSEC) model. All chemicals that were identified as a contact sensitizer on decoding induced a definite decrease in the number of CD1a and HLA-DR-positive epidermal LCs in the epidermis of the skin explants, as determined by both semiquantitative immunohistochemistry and quantitative flow cytometric analysis.
View Article and Find Full Text PDF