Publications by authors named "Chi Man Luk"

Molybdenum disulphide (MoS2), which is a typical semiconductor from the family of layered transition metal dichalcogenides (TMDs), is an attractive material for optoelectronic and photodetection applications because of its tunable bandgap and high quantum luminescence efficiency. Although a high photoresponsivity of 880-2000 AW(-1) and photogain up to 5000 have been demonstrated in MoS2-based photodetectors, the light absorption and gain mechanisms are two fundamental issues preventing these materials from further improvement. In addition, it is still debated whether monolayer or multilayer MoS2 could deliver better performance.

View Article and Find Full Text PDF

Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices.

View Article and Find Full Text PDF

Glucose-derived water-soluble crystalline graphene quantum dots (GQDs) with an average diameter as small as 1.65 nm (∼5 layers) were prepared by a facile microwave-assisted hydrothermal method. The GQDs exhibits deep ultraviolet (DUV) emission of 4.

View Article and Find Full Text PDF