Objective: To evaluate the feasibility, acceptability and efficacy of an Acceptance and Commitment Therapy-based Lifestyle Counselling Program (ACT-LCP) on health outcomes of individuals with early psychosis.
Methods: In this assessor-blinded, parallel-group pilot randomized controlled trial, 72 early psychosis patients (mean age [SD] = 30.51 [8.
Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice.
View Article and Find Full Text PDFNeuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness.
View Article and Find Full Text PDFThe nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell.
View Article and Find Full Text PDFAims/hypothesis: Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear.
View Article and Find Full Text PDFObjective: Aguti-related protein (AGRP) neurons in the arcuate nucleus of the hypothalamus (ARC), which co-express neuropeptide Y (NPY), are key regulators of feeding and energy homeostasis. However, the precise role NPY has within these neurons and the specific pathways that it control are still unclear. In this article, we aimed to determine what aspects of feeding behaviour and energy homeostasis are controlled by NPY originating from AGRP neurons and which Y-receptor pathways are utilised to fulfil this function.
View Article and Find Full Text PDFAlthough best known for their involvement in modulating nociception, Neuropeptide FF (NPFF) group peptides have been suggested to fulfil a variety of biological functions such as feeding, anxiety behaviors and thermogenesis. However, evidence supporting these functions of NPFF is mostly pharmacological, leaving the physiological relevance unaddressed. Here we examined the physiological impact of lack of NPFF signalling in both genders using a Npff mouse model.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2022
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit.
View Article and Find Full Text PDFChronic stress has adverse consequences on many organ systems and physiological processes. However, existing protocols show large variability in response and are not suitable for female mice. Here, we provide a step-by-step protocol for establishing a reliable chronic stress model in mice that can be used in a variety of physiological settings.
View Article and Find Full Text PDFCocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions.
View Article and Find Full Text PDFPeptide YY (PYY), produced by endocrine L cells in the gut, is known for its critical role in regulating gastrointestinal functions as well as satiety. However, how these processes are integrated with maintaining a healthy gut microbiome composition is unknown. Here, we show that lack of PYY in mice leads to distinct changes in gut microbiome composition that are diet-dependent.
View Article and Find Full Text PDFBackground/objectives: Maintaining energy balance is important to ensure a healthy organism. However, energy partitioning, coordinating the distribution of sufficient energy to different organs and tissues is equally important, but the control of this process is largely unknown. In obesity, an increase in fat mass necessitates the production of additional bone mass to cope with the increase in bodyweight and processes need to be in place to communicate this new weight bearing demand.
View Article and Find Full Text PDFNeuropeptide Y (NPY) producing neurons in the arcuate nucleus (Arc) of the hypothalamus are essential to the regulation of food intake and energy homeostasis. Whilst they have classically been thought to co-express agouti-related peptide (AgRP), it is now clear that there is a sub-population of NPY neurons in the Arc that do not. Here, we show that a subset of AgRP-negative, NPY-positive neurons in the Arc also express neurotensin (NTS) and we use an NTS-Cre line to investigate the function of this sub-population of NPY neurons.
View Article and Find Full Text PDFNeuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention.
View Article and Find Full Text PDFExcess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2 mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected.
View Article and Find Full Text PDFCocaine- and amphetamine-regulated transcript (CART) is widely expressed in the hypothalamus and an important regulator of energy homeostasis; however, the specific contributions of different CART neuronal populations to this process are not known. Here, we show that depolarization of mouse arcuate nucleus (Arc) CART neurons via DREADD technology decreases energy expenditure and physical activity, while it exerts the opposite effects in CART neurons in the lateral hypothalamus (LHA). Importantly, when stimulating these neuronal populations in the absence of CART, the effects were attenuated.
View Article and Find Full Text PDFFailure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets.
View Article and Find Full Text PDFThe embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors.
View Article and Find Full Text PDFLhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression.
View Article and Find Full Text PDFBackground: In patients at high risk of atherosclerotic cardiovascular diseases (ASCVDs), residual cardiovascular risk persists despite the achievement of target LDL cholesterol levels with statin therapy. It is still unclear whether adding lipid-modifying agent to statin treatment can further improve clinical outcomes.
Methods: Randomized controlled trials (RCTs) in terms of adding lipid-modifying agent to statin versus statin monotherapy in patients at high risk of ASCVD were identified by electronic and manual searches.
The Otx2 gene encodes a paired-type homeobox transcription factor that is essential for the induction and the patterning of the anterior structures in the mouse embryo. Otx2 knockout embryos fail to form a head. Whereas previous studies have shown that Otx2 is required in the anterior visceral endoderm and the anterior neuroectoderm for head formation, its role in the anterior mesendoderm (AME) has not been assessed specifically.
View Article and Find Full Text PDF