Publications by authors named "Chi Hun Park"

The transcription factor SOX2 plays a crucial role in pluripotency during embryogenesis. In this study, we successfully generated porcine induced pluripotent stem cells (piPSC) by transducing porcine fetal fibroblasts with doxycycline-inducible reprogramming lentiviral vectors. To enhance the utility of these piPSCs, we used a CRISPR/Cas9-based homology-directed repair (HDR) system to introduce a nls-zsGreen reporter in-frame and before the stop codon of the SOX2 coding sequence.

View Article and Find Full Text PDF

Fibroblasts are the common cell type in the connective tissue-the most abundant tissue type in the body. Fibroblasts are widely used for cell culture, for the generation of induced pluripotent stem cells (iPSCs), and as nuclear donors for somatic cell nuclear transfer (SCNT). We report for the first time, the derivation of embryonic fibroblasts (EFs) from porcine embryonic outgrowths, which share similarities in morphology, culture characteristics, molecular markers, and transcriptional profile to fetal fibroblasts (FFs).

View Article and Find Full Text PDF

Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst.

View Article and Find Full Text PDF

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal.

View Article and Find Full Text PDF

The domestic pig is an attractive model for biomedical research because of similarities in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by CRISPR/Cas9 gene ablation.

View Article and Find Full Text PDF

Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades.

View Article and Find Full Text PDF
Article Synopsis
  • Genome editing tools like CRISPR/Cas9 are being used to create genetically modified pigs, which are important for agriculture and research.
  • The study specifically edited the NANOS2 gene in pig embryos, resulting in offspring that display certain traits similar to genetically modified mice, particularly affecting male germline development.
  • The findings suggest that male pigs with one functioning NANOS2 gene and female knockout pigs remain fertile, indicating potential for using NANOS2 knockout males in advancing genetic research and gamete availability in livestock.
View Article and Find Full Text PDF

The domestic pig is an ideal "dual purpose" animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT) and direct injection of CRISPR/Cas ribonucleoprotein complex targeting into the reconstituted oocytes to generate ablated Ossabaw fetuses.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving the quality of embryonic stem cells (ESCs) derived from cloned embryos of large animals, specifically through somatic cell nuclear transfer (SCNT).
  • It found that treating cloned embryos with histone deacetylase inhibitors (HDACi) like Scriptaid significantly enhanced embryo quality and the total cell count in blastocysts.
  • Additionally, aggregating SCNT embryos into existing blastocysts improved formation rates and derivation efficiency of porcine ESC-like cells, demonstrating a promising technique for advancing stem cell research.
View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD.

View Article and Find Full Text PDF

The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases.

View Article and Find Full Text PDF

Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) is an epigenetic mechanism that occurs in the eutherian embryo development to equalize the dosage of X-linked genes between males and females. This event is regulated by various factors, and the genes located in the X-chromosome inactivation center (XIC), which is known to be an evolutionary conserved region, are associated with XCI; however, a number of studies regarding this epigenetic event and genomic region are primarily performed in mouse models despite its species-specific features. Thus, in this study, the porcine XIC was identified, and we analyzed the expression of XIC-linked genes in porcine preimplantation embryos.

View Article and Find Full Text PDF

In the present study we used an empty zona pellucida derived from hatched blastocysts as an alternative source for embryo aggregation and compared results with the conventional microwell method. Denuded 4-cell stage porcine embryos were aggregated by introduction into an empty zona or placement within a concave microwell. The present study showed that although the rate of aggregate formation was similar, the blastocyst rates and allocation of more cells to the inner cell mass (ICM) in the resultant aggregates were increased significantly more in the empty zona than in the microwell.

View Article and Find Full Text PDF

OCT4 encoded by POU5F1 has a crucial role of maintaining pluripotency in embryonic stem cells during early embryonic development and several OCT4 variants have been identified in mouse and human studies. The objective of this study was to identify different variants of OCT4 and analyze their expression patterns in preimplantation porcine embryos and various tissues. In this study, we showed that POU5F1 transcribes its three variants, namely OCT4A, OCT4B, and OCT4B1.

View Article and Find Full Text PDF

To determine whether exogenous amino acids affect gene transcription patterns in parthenogenetic porcine embryos, we investigated the effects of amino acid mixtures in culture medium. Parthenogenetic embryos were cultured in PZM3 medium under four experimental conditions: 1) control (no amino acids except L-glutamine and taurine); 2) nonessential amino acids (NEAA); 3) essential amino acids (EAA); and 4) NEAA and EAA. The rate of development of embryos to the four-cell stage was not affected by treatment.

View Article and Find Full Text PDF

Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.

View Article and Find Full Text PDF

To determine whether the genomic imprinting can be maintained during the process of embryonic stem (ES) cell derivation from pig blastocysts, mRNA and DNA methylation at the IGF2/H19 imprinting control region in putative ES cells derived from in vitro fertilized (IVF) and parthenogenetic (PG) embryos were investigated. In the present study, one IVF- and three PG ES-like cell lines were established and analyzed for cellular characteristics such as pluripotent marker expression and differentiation capacity. The results showed that these putative ES cells derived from pig blastocysts fulfilled the general "stemness" criteria.

View Article and Find Full Text PDF

The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis.

View Article and Find Full Text PDF

To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF), and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts.

View Article and Find Full Text PDF

In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint.

View Article and Find Full Text PDF

The general method of porcine in vitro fertilization (IVF), involving the co-culture of both gametes in a medium drop, is thought to be the main reason for the high incidence of polyspermy. The aim of this study was to reduce the polyspermic fertilization of porcine embryos during IVF by the modified swim-up method, based on general sperm swim-up technique. Within this design, a 70 microm pore sized cell strainer was used to separate the sperm pellet placed at the bottom of a tube from the mature oocytes placed within the upper region.

View Article and Find Full Text PDF

The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes.

View Article and Find Full Text PDF

In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to those of their in vivo counterparts. The objective of this study was to increase developmental competence and to gain an understanding of cell allocation in blastocysts derived from the aggregation of four-cell stage porcine embryos produced in vitro. After removal of the zona pellucida, two (2x) and three (3x) four-cell stage embryos were aggregated by co-culturing them in aggregation plates.

View Article and Find Full Text PDF