Genome-wide association studies (GWASs) have identified hundreds of thousands of genetic variants associated with complex diseases and traits. However, most variants are noncoding and not clearly linked to genes, making it challenging to interpret these GWAS signals. We present a systematic variant-to-function study, prioritizing the most likely functional elements of the genome for experimental follow-up, for >148,000 variants identified for hematological traits.
View Article and Find Full Text PDFCellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders.
View Article and Find Full Text PDF