Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains.
View Article and Find Full Text PDFThis article reports a new process for creating polymer-based nanocomposites with enhanced dispersion of ceramic nanoparticles without using any surfactants, and the resulted changes in their optical and biological properties. Specifically, dispersion of two different ceramic nanoparticles, that is, hydroxyapatite (nHA) and magnesium oxide (nMgO) nanoparticles, in a model biodegradable polymer, namely poly(lactic-co-glycolic acid) (PLGA), was studied. High-power sonication was integrated with dual asymmetric centrifugal (DAC) mixing to improve dispersion of nanoparticles during solvent casting.
View Article and Find Full Text PDFUnlabelled: This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation.
View Article and Find Full Text PDF