Recycling waste into commercial products is a profitable strategy but the lifetime of immobilized cells for long-term waste treatment remains a problem. This study presents alternative cell immobilization methods for valorizing food waste (FW) and oily food waste (OFW) to microbial carotenoids and proteins. Carriers (pumice or smectite), magnetite nanoparticles, and isolated photosynthetic bacteria were integrated to obtain magnetically recoverable bacteria-pumice and bacteria-smectite nanocomposites.
View Article and Find Full Text PDFThe rapid degradation of alginate beads limits the lifespan of immobilized cells. In this study, bacterial cellulose (BC) incorporated in alginate was used to improve the mechanical properties, swelling ratio, and recycling time of the immobilized photosynthetic bacterium Rhodopseudomonas faecalis PA2 for the removal of cooking oil residues. Beads reinforced with 25 and 50% BC showed a higher Young's modulus and compressive strength and a lower swelling ratio than the control treatment (0% BC).
View Article and Find Full Text PDFThe acquisition of carotenoids and polyunsaturated fatty acids (PUFAs) from plants and animals for use as functional ingredients raises concerns regarding productivity and cost; utilization of microorganisms as alternative sources is an option. We proposed to evaluate the production of carotenoids and PUFAs by PA2 using different vegetable oils (rice bran oil, palm oil, coconut oil, and soybean oil) as carbon source, different concentrations of yeast extract as nitrogen source at different cultivation time to ensure the best production. Cultivation with soybean oil as source of carbon led to the most significant changes in the fatty acid profile.
View Article and Find Full Text PDFWaste cooking oil discharge causes environmental pollution in receiving waters, particularly when associated with heavy metals that can lead to formation of hazardous organometallic compounds. This study combined iron oxide nanomaterial and the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2 for removal of cooking oil in the presence of heavy metals. R.
View Article and Find Full Text PDFThis study aimed to improve biomass, carotenoid, bacteriochlorophyll, protein, lipid, and carbohydrate contents of Rhodopseudomonas faecalis PA2 using different light regimes. Light intensity (4000, 6000, 8000, and 10,000 lx), together with photoperiod (24:0, 16:8, 12:12, and 8:16 h light/dark), was assigned as single-phase (SP) cultivation while two-phase (TP) cultivation used two light intensities (using 4000 lx as the first phase), together with the control of phase shift (3, 6, and 9 days) and photoperiod. Biomass, carotenoid, and bacteriochlorophyll contents were maximized by SP cultivation; light at 8000 lx with light-dark cycle of 24:0 was optimal for pigments synthesis.
View Article and Find Full Text PDFMicrobiologyopen
December 2019
To reduce the cost of protein feedstock for animal feed, the use of single cell protein (SCP) produced from waste of animal agriculture is an interesting choice. This study reveals that chicken manure was the best substrate for SCP production by submerged fermentation using photosynthetic bacteria compared to swine, cow, and buffalo manure. Regression analysis showed that the productions were found to be significantly influenced by chicken manure content, inoculum size, and cultivation time.
View Article and Find Full Text PDFThe bioconversion of sugar-industry wastewater to value-added products is a prominent topic in biotechnology. This work cultured a carotenoid-producing photosynthetic bacterium, , in a photo-bioreactor containing different wastewater from wastewater treatment ponds of a Thai sugar company. The cultivated produced single cell protein (SCP) with supplemental carotenoids.
View Article and Find Full Text PDFUtilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated.
View Article and Find Full Text PDF