Publications by authors named "Chevoir F"

Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects.

View Article and Find Full Text PDF

We simulate dense assemblies of frictional spherical grains in steady shear flow under controlled normal stress P in the presence of a small amount of an interstitial liquid, which gives rise to capillary menisci, assumed isolated (pendular regime), and attractive forces, which are hysteretic: Menisci form at contact, but do not break until grains are separated by a finite rupture distance. The system behavior depends on two dimensionless control parameters, inertial number I and reduced pressure P*=aP/(πΓ), comparing confining forces ∼a2P to meniscus tensile strength F0=πΓa, for grains of diameter a joined by menisci with surface tension Γ. We pay special attention to the quasistatic limit of slow flow and observe systematic, enduring strain localization in some of the cohesion-dominated (P*∼0.

View Article and Find Full Text PDF

The influence of grain angularity on the properties of dense flows down a rough inclined plane are investigated. Three-dimensional numerical simulations using the nonsmooth contact dynamics method are carried out with both spherical (rounded) and polyhedral (angular) grain assemblies. Both sphere and polyhedra assemblies abide by the flow start and stop laws, although much higher tilt angle values are required to trigger polyhedral grain flow.

View Article and Find Full Text PDF

We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and strain localized near the walls, and finally (C) a state with broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall.

View Article and Find Full Text PDF

The rheology of granular materials near an interface is investigated through proton magnetic resonance imaging. A new cylinder shear apparatus has been inserted in the magnetic resonance imaging device, which allows the control of the radial confining pressure exerted by the outer wall on the grains and the measurement of the torque on the inner shearing cylinder. A multi-layer velocimetry sequence has been developed for the simultaneous measurement of velocity profiles in different sample zones, while the measurement of the solid fraction profile is based on static imaging of the sample.

View Article and Find Full Text PDF

Using discrete simulations, we investigate the behavior of a model granular material within an annular shear cell. Specifically, two-dimensional assemblies of disks are placed between two circular walls, the inner one rotating with prescribed angular velocity, while the outer one may expand or shrink and maintains a constant radial pressure. Focusing on steady state flows, we delineate in parameter space the range of applicability of the recently introduced constitutive laws for sheared granular materials (based on the inertial number).

View Article and Find Full Text PDF

We study the plane shear flow of a dense assembly of dissipative disks using discrete simulation and prescribing the pressure and the shear rate. Those shear states are steady and uniform, and become intermittent in the quasistatic regime. In the limit of rigid grains, the shear state is determined by a single dimensionless number, called the inertial number I , which describes the ratio of inertial to pressure forces.

View Article and Find Full Text PDF

We show that the rheological properties of dry granular materials, as well as foams and emulsions, are similar to typical thixotropic fluids: under a sufficiently strong shear the viscosity decreases in time, leading to a hysteresis in an up-and-down stress ramp. This leads to a viscosity bifurcation around a critical stress: for smaller stresses, the viscosity increases in time and the material eventually stops flowing, whereas for slightly larger stresses the viscosity decreases continuously with time and the flow accelerates. These results show that all jammed systems exhibit strong mechanical similarities around the transition between a "fluid" and a "solid" state, and that the transition between these states is discontinuous.

View Article and Find Full Text PDF

The purpose of this study is to investigate possible differences in geometry and connectivity of the liquid phase in a partially water-satured porous medium between the adsorption and the desorption branches, using a series of silica gels. This was done by comparing the T1 and T2 relaxation times (in 1H and 2H nuclear magnetic resonance (NMR) relaxation) as well as the water self-diffusion coefficient D (in 1H) along the two branches of the adsorption/desorption isotherms. The results show that the two relaxation times and the diffusion coefficient are strongly dependent on the water content (saturation level).

View Article and Find Full Text PDF