Publications by authors named "Cheval H"

Parkinson's disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the . Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains.

View Article and Find Full Text PDF

Induced pluripotent stem cell-derived organoids offer an unprecedented access to complex human tissues that recapitulate features of architecture, composition and function of organs. In the context of Parkinson's Disease (PD), human midbrain organoids (hMO) are of significant interest, as they generate dopaminergic neurons expressing markers of identity, which are the most vulnerable to degeneration. Combined with genome editing approaches, hMO may thus constitute a valuable tool to dissect the genetic makeup of PD by revealing the effects of risk variants on pathological mechanisms in a representative cellular environment.

View Article and Find Full Text PDF

Midbrain dopaminergic (DA) neurons are involved in diverse neurological functions, including control of movements, emotions or reward. In turn, their dysfunctions cause severe clinical manifestations in humans, such as the appearance of motor and cognitive symptoms in Parkinson's Disease. The physiology and pathophysiology of these neurons are widely studied, mostly with respect to molecular mechanisms implicating protein-coding genes.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons.

View Article and Find Full Text PDF

De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development.

View Article and Find Full Text PDF

Urban ecology is emerging as an integrative science that explores the interactions of people and biodiversity in cities. Interdisciplinary research requires the creation of new tools that allow the investigation of relations between people and biodiversity. It has been established that access to green spaces or nature benefits city dwellers, but the role of species diversity in providing psychological benefits remains poorly studied.

View Article and Find Full Text PDF
Article Synopsis
  • - Rett Syndrome is a neurological disorder linked to mutations in the MECP2 gene, primarily affecting brain function, as shown in mouse models with MEC2 inactivation or mutation.
  • - Researchers deleted the Mecp2 gene in about 80% of brain cells at different early life stages in mice, observing that inactivation leads to Rett-like symptoms and early death across all ages tested.
  • - Two critical age thresholds were identified: an earlier threshold at 8-14 weeks where symptoms emerge, and a later threshold at 30-45 weeks where a significant reduction in MeCP2 leads to incompatibility with life, highlighting its increasing importance as the brain ages.
View Article and Find Full Text PDF

Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively.

View Article and Find Full Text PDF

Activity-dependent regulation of Egr1/Zif268, a transcription factor (TF) of the Egr family, is essential for stabilization of dentate gyrus synaptic plasticity and consolidation and reconsolidation of several forms of memory. The gene can be rapidly induced in selective brain circuits after certain types of learning or after recall. Here, we focused on area CA1 and examined regulation of Egr1, Egr2, and Egr3 mRNA and protein, and their DNA binding activity to the Egr response element (ERE) at different times after LTP in vivo and after learning and recall of a fear memory.

View Article and Find Full Text PDF

The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory.

View Article and Find Full Text PDF

It is well established that Egr1/zif268, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memories. Recently, the Egr3 family member has also been implicated in learning and memory. Because Egr family members encode closely related zinc-finger transcription factors sharing a highly homologous DNA binding domain that recognises the same DNA sequence, they may have related functions in brain.

View Article and Find Full Text PDF

The mechanisms underlying the induction of synaptic plasticity and the formation of long-term memory involve activation of cell-signalling cascades and protein modifications such as phosphorylation and dephosphorylation. Based on a protein candidate strategy, studies have identified several protein kinases and their substrates, which show an altered phosphorylation state during the early phases of long-term potentiation (LTP), yet only a limited number of synaptic phosphoproteins are known to be implicated in LTP. To identify new phosphoproteins associated with LTP, we have undertaken a proteomic study of phosphoproteins at different time points following the induction of LTP in the dentate gyrus in vivo (0, 15 and 90 min).

View Article and Find Full Text PDF