Publications by authors named "Cheung-Ming Chow"

Plant organogenesis requires control over division planes and anisotropic cell wall growth, which each require spatial patterning of cells. Polyhedral plant cells can display complex patterning in which individual faces are established as biochemically distinct domains by endomembrane trafficking. We now show that, during organogenesis, the Arabidopsis endomembrane system specifies an important additional cellular spatial domain: the geometric edges.

View Article and Find Full Text PDF

Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences.

View Article and Find Full Text PDF

Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. The process differs to some extent between animal and plant cells, but proteins of the syntaxin family mediate membrane fusion in the plane of cell division in diverse organisms. How syntaxin localization is kept in check remains elusive.

View Article and Find Full Text PDF

Ypt/Rab GTPases act as key regulators of intracellular traffic through the conformational differences exhibited by their GTP or GDP-bound forms. In this paper, two Arabidopsis Ypt6 homologues, AtRAB-H1(b) and AtRAB-H1(c) were characterized and compared. Using a live cell imaging approach, it is shown that yellow fluorescent protein-fusions (YFP) of AtRAB-H1(b) and AtRAB-H1(c) locate to the Golgi and to the cytosol in both Nicotiana tabacum and in Arabidopsis thaliana.

View Article and Find Full Text PDF

The Ypt3/Rab11/Rab25 subfamily of Rab GTPases has expanded greatly in Arabidopsis thaliana, comprising 26 members in six provisional subclasses, Rab-A1 to Rab-A6. We show that the Rab-A2 and Rab-A3 subclasses define a novel post-Golgi membrane domain in Arabidopsis root tips. The Rab-A2/A3 compartment was distinct from but often close to Golgi stacks and prevacuolar compartments and partly overlapped the VHA-a1 trans-Golgi compartment.

View Article and Find Full Text PDF

In wild-type Arabidopsis, levels of ASN1 mRNA and asparagine (Asn) are tightly regulated by environmental factors and metabolites. Because Asn serves as an important nitrogen storage and transport compound used to allocate nitrogen resources between source and sink organs, we tested whether overexpression of the major expressed gene for Asn synthetase, ASN1, would lead to changes in nitrogen status in the ultimate storage organ for metabolites-seeds. Transgenic Arabidopsis constitutively overexpressing ASN1 under the cauliflower mosaic virus 35S promoter were constructed (35S-ASN1).

View Article and Find Full Text PDF