Publications by authors named "Cheul Cho"

Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection.

View Article and Find Full Text PDF
Article Synopsis
  • HBV affects 257 million people globally, with 20 million also infected with HDV, creating a significant health issue.
  • Researchers developed a new cell culture model using primary human hepatocytes that allows for HBV and HBV/HDV co-infections to be studied over time, proving effective for drug testing.
  • The study finds that HBV does not strongly trigger the immune response, and HDV co-infection does not drastically change gene expression, highlighting the need for further research on how these infections interact and affect the liver.
View Article and Find Full Text PDF

There is intense interest and effort toward regenerating the brain after severe injury. Stem cell transplantation after insult to the central nervous system has been regarded as the most promising approach for repair; however, engrafting cells alone might not be sufficient for effective regeneration. In this study, we have compared neural progenitors (NPs) from the fetal ventricular zone (VZ), the postnatal subventricular zone, and an immortalized radial glia (RG) cell line engineered to conditionally secrete the trophic factor insulin-like growth factor 1 (IGF-1).

View Article and Find Full Text PDF

The failure of drug candidates during clinical trials and post-marketing withdrawal due to Drug Induced Liver Injury (DILI), results in significant late-stage attrition in the pharmaceutical industry. Animal studies have proven insufficient to definitively predict DILI in the clinic, therefore a variety of in vitro models are being tested in an effort to improve prediction of human hepatotoxicity. The model system described here consists of cryopreserved primary rat, dog or human hepatocytes co-cultured together with a fibroblast cell line, which aids in the hepatocytes' maintenance of more in vivo-like characteristics compared to traditional hepatic mono-cultures, including long term viability and retention of activity of cytochrome P450 isozymes.

View Article and Find Full Text PDF

Hepatitis B virus causes chronic infections in 250 million people worldwide. Chronic hepatitis B virus carriers are at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. A prophylactic vaccine exists and currently available antivirals can suppress but rarely cure chronic infections.

View Article and Find Full Text PDF

In this study, a new 3D liver model was developed using biomimetic nanofiber scaffolds and co-culture system consisting of hepatocytes and fibroblasts for the maintenance of long-term liver functions. The chitosan nanofiber scaffolds were fabricated by the electrospinning technique. To enhance cellular adhesion and spreading, the surfaces of the chitosan scaffolds were coated with fibronectin (FN) by adsorption and evaluated for various cell types.

View Article and Find Full Text PDF

Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure.

View Article and Find Full Text PDF

Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan.

View Article and Find Full Text PDF

Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure.

View Article and Find Full Text PDF

Progress is being made in developing neuroprotective strategies for traumatic brain injuries; however, there will never be a therapy that will fully preserve neurons that are injured from moderate to severe head injuries. Therefore, to restore neurological function, regenerative strategies will be required. Given the limited regenerative capacity of the resident neural precursors of the CNS, many investigators have evaluated the regenerative potential of transplanted precursors.

View Article and Find Full Text PDF

Two-dimensional (2D) monolayer cultures are the standard in vitro model for cancer research. However, they fail to recapitulate the three-dimensional (3D) environment and quickly lose their function. In this study, we developed a new 3D multicellular heterospheroid tumor model in a collagen hydrogel culture system that more closely mimics the in vivo tumor microenvironment for anti-cancer drug testing.

View Article and Find Full Text PDF

An effective paradigm for transplanting large numbers of neural stem cells after central nervous system (CNS) injury has yet to be established. Biomaterial scaffolds have shown promise in cell transplantation and in regenerative medicine, but improved scaffolds are needed. In this study we designed and optimized multifunctional and biocompatible chitosan-based films and microspheres for the delivery of neural stem cells and growth factors for CNS injuries.

View Article and Find Full Text PDF

This paper introduces a benchtop method for patterning mammalian cells-i.e., for culturing cells at specific locations-on planar substrates.

View Article and Find Full Text PDF

The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model.

View Article and Find Full Text PDF

Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling microenvironments in which cell behavior can be observed. Here we present a novel approach to generate layered patterning of hepatocytes on micropatterned fibroblast feeder layers using microfabricated polydimethylsiloxane (PDMS) stencils. We fabricated PDMS stencils to pattern circular holes with diameters of 500 microm.

View Article and Find Full Text PDF

The current application for many potential cell-based treatments for liver failure is limited by the low availability of mature functional hepatocytes. Although adult hepatocytes have a remarkable ability to proliferate in vivo, attempts to proliferate adult hepatocytes in vitro have been less successful. In this study, we investigated the effect of coculture cell type on the proliferative response and the functional activities of hepatocytes.

View Article and Find Full Text PDF

Unlabelled: Orthotopic liver transplantation is the only proven effective treatment for fulminant hepatic failure (FHF), but its use is limited because of organ donor shortage, associated high costs, and the requirement for lifelong immunosuppression. FHF is usually accompanied by massive hepatocellular death with compensatory liver regeneration that fails to meet the cellular losses. Therefore, therapy aimed at inhibiting cell death and stimulating endogenous repair pathways could offer major benefits in the treatment of FHF.

View Article and Find Full Text PDF

Embryonic stem cell-derived endoderm is critical for the development of cellular therapies for the treatment of disease such as diabetes, liver cirrhosis, or pulmonary emphysema. Here, we describe a novel approach to induce endoderm from mouse embryonic stem (mES) cells using fibronectin-coated collagen gels. This technique results in a homogeneous endoderm-like cell population, demonstrating endoderm-specific gene and protein expression, which remains committed following in vivo transplantation.

View Article and Find Full Text PDF

One of the major hurdles of cellular therapies for the treatment of liver failure is the low availability of functional human hepatocytes. While embryonic stem (ES) cells represent a potential cell source for therapy, current methods for differentiation result in mixed cell populations or low yields of the cells of interest. Here we describe a rapid, direct differentiation method that yields a homogeneous population of endoderm-like cells with 95% purity.

View Article and Find Full Text PDF

In vitro expansion of hematopoietic stem cells (HSCs) has been employed to obtain sufficient numbers of stem cells for successful engraftment after HSC transplantation. A three-dimensional perfusion bioreactor system with a heparin-chitosan scaffold was designed and evaluated for its capability to support maintenance and expansion of HSCs. Porous chitosan scaffolds were fabricated by a freeze-drying technique and N-desulfated heparin was covalently immobilized within the scaffolds using carbodiimide chemistry.

View Article and Find Full Text PDF

Embryonic stem (ES) cells form spontaneous aggregates during differentiation, and cell-cell communication in the aggregates plays an important role in differentiation. The development of a controlled differentiation scheme for ES cells has been hindered by the lack of a reliable method to produce uniform aggregate sizes. Conventional techniques, such as hanging drop and suspension cultures, do not allow precise control over size of ES cell aggregates.

View Article and Find Full Text PDF

Bioartificial liver (BAL) devices have been developed to treat patients undergoing acute liver failure. One of the most important parameters to consider in designing these devices is the oxygen consumption rate of the seeded hepatocytes which are known to have oxygen consumption rates 10 times higher than most other cell types. Hepatocytes in various culture configurations have been tested in BAL devices including those formats that involve co-culture of hepatocytes with other cell types.

View Article and Find Full Text PDF