Wound dressing materials fabricated using biocompatible polymers have become quite relevant in medical applications, and one such material is bacterial cellulose (BC) with exceptional properties in terms of biocompatibility, high purity, crystallinity (∼88%), and high water holding capacity. However, the lack of antibacterial activity slightly restricts its application as a wound dressing material. In this work, polycaprolactone (PCL) was first impregnated into the BC matrix to fabricate flexible bacterial cellulose-based PCL membranes (BCP), which was further functionalized with antibiotics gentamicin (GEN) and streptomycin (SM) separately, to form wound dressing composite scaffolds to aid infectious wound healing.
View Article and Find Full Text PDFThe concept of sustainability and the substitution of non-biodegradable packaging using biodegradable packaging has attracted gigantic interest. The objective of the present study was to revalorize the biowaste "de-oiled green algae biomass (DAB)" of using a green approach and the development of biodegradable chitosan (CS)-based edible active biocomposite films and coatings for prolonging the shelf life of fresh produce. Ultrasound-assisted green extraction was conducted using food-grade solvent ethanol for obtaining the bio-actives, namely "crude algae ethanolic extract (CAEE)" from DAB.
View Article and Find Full Text PDFPoly(lactic acid) (PLA) is an emerging biobased implant material. Despite its biocompatibility and the aseptic procedures followed during orthopedic surgery, bacterial infection remains an obstacle to implementing PLA-based implants. To tackle this issue, prodigiosin-incorporated PLA has been developed, which possesses improved hydrophobicity with a contact angle of 111 ± 1.
View Article and Find Full Text PDFThe present study evaluates biodegradation of the polyblends of poly(lactic acid) (PLA), polycaprolactone (PCL) and microcrystalline cellulose (MCC) in different compositions and comparison of the properties of those blends with that of neat PLA and neat PCL. The samples were melt extruded and blended to evaluate the environmental fate of the polyblends under simulated composting conditions following the standard ASTM International D5338-15 protocol. It was seen that blends with a higher concentration of PCL and MCC in the PLA matrix showed higher carbon mineralization percentage in comparison to the blends having low PCL and MCC components.
View Article and Find Full Text PDF