Publications by authors named "Chethana Kulkarni"

Article Synopsis
  • The increasing significance of antibody-drug conjugates (ADCs) in cancer treatment necessitates a deeper understanding of their molecular behavior and mechanisms.
  • Imaging studies using traditional fluorophores can distort the ADC's properties, leading to inaccurate assessments of their effectiveness and safety.
  • The introduction of a "clickable" ADC that uses a smaller azide group for labeling provides a more effective alternative, showing better potency and uptake in cells compared to conventional fluorophore-labeled ADCs.
View Article and Find Full Text PDF

A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising class of cancer therapeutics that combine the specificity of antibodies with the cytotoxic effects of payload drugs. A quantitative understanding of how ADCs are processed intracellularly can illustrate which processing steps most influence payload delivery, thus aiding the design of more effective ADCs. In this work, we develop a kinetic model for ADC cellular processing as well as generalizable methods based on flow cytometry and fluorescence imaging to parameterize this model.

View Article and Find Full Text PDF

Calmodulin (CaM) is a widely studied Ca(2+)-binding protein that is highly conserved across species and involved in many biological processes, including vesicle release, cell proliferation, and apoptosis. To facilitate biophysical studies of CaM, researchers have tagged and mutated CaM at various sites, enabling its conjugation to fluorophores, microarrays, and other reactive partners. However, previous attempts to add a reactive label to CaM for downstream studies have generally employed nonselective labeling methods or resulted in diminished CaM function.

View Article and Find Full Text PDF

Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions.

View Article and Find Full Text PDF

A site to behold: Robust site-specific functionalization of engineered proteins is achieved with N-myristoyl transferase (NMT) in bacterial cells. NMT tolerates non-natural substrate proteins as well as reactive fatty acid tags, rendering it a powerful tool for protein conjugation applications, including the construction of protein microarrays from lysate.

View Article and Find Full Text PDF