Human performance on diverse tests of intellect are impacted by a "general" regulatory factor that accounts for up to 50% of the variance between individuals on intelligence tests. Neurobiological determinants of general cognitive abilities are essentially unknown, owing in part to the paucity of animal research wherein neurobiological analyses are possible. We report a methodology with which we have assessed individual differences in the general learning abilities of laboratory mice.
View Article and Find Full Text PDFUsing an identified synapse in the nervous system of the mollusc Hermissenda, the influence of somatic calcium accumulation on regulated synaptic transmission was investigated. Hair cells in Hermissenda project onto postsynaptic B photoreceptors where they mediate inhibitory postsynaptic potentials (IPSPs). Intracellular recordings in combination with bath perfusion of calcium channel modulators indicated that L-type channels were present on the hair cell soma but not on the terminal branches.
View Article and Find Full Text PDFIn laboratory studies, the assessment of memory is typically associated with overt behavioral responses. Thus, it has been difficult to determine whether the enhancement of hippocampal sensory-evoked potentials that often accompany memory formation are the neurophysiological manifestation of a memory "trace" or are a secondary product of the behavioral expression of the memory. We addressed this issue by examining changes in evoked hippocampal field potentials during sensory preconditioning, a form of behaviorally silent relational learning that requires an intact hippocampus for execution.
View Article and Find Full Text PDF