We have combined automated fluorescence microscopy with a combinatorial approach for creating polymer blend gradients to yield a rapid screening method for characterizing cell proliferation on polymer blends. A gradient in polymer blend composition of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) was created in the form of a strip-shaped film and was annealed to allow PLLA to crystallize. Fourier transform infrared (FTIR) microspectroscopy was used to determine the composition in the gradients and atomic force microscopy was used to characterize surface topography.
View Article and Find Full Text PDFObjectives: The aims of the study were to synthesize derivatives of Bis-GMA having pendant n-alkyl urethane substituents and to characterize and evaluate their physicochemical properties.
Methods: Stoichiometric amounts of Bis-GMA and n-alkyl isocyanates were reacted in dichloromethane with dibutyltin dilaurate as a catalyst. Volumetric shrinkage, water uptake, degree of vinyl conversion, refractive index and viscosity of resulting urethane monomers and those of Bis-GMA were measured.
We have assessed the biocompatibility of a new composite bone graft consisting of calcium phosphate cement (CPC) and poly(lactide-co-glycolide) (PLGA) microspheres (approximate diameter of 0.18-0.36 mm) using cell culture techniques.
View Article and Find Full Text PDF