RPH-120 is a novel fully human anti-PD-L1 IgG1 monoclonal antibody with specifically designed Asn300Ala mutation in Fc fragment. Surface plasmon resonance assay showed that affinity of the RPH-120 to the dimeric form of human PD-L1-Fc fusion protein was much higher than affinity to the monomeric His-tagged PD-L1. Further binding studies demonstrated that RPH-120 is able to bind to human and monkey but not mouse PD-L1.
View Article and Find Full Text PDFPhosphorylation of the retinoblastoma-related or pocket proteins RB1/pRb, RBL1/p107, and RBL2/p130 regulates cell cycle progression and exit. While all pocket proteins are phosphorylated by cyclin-dependent kinases (CDKs) during the G1/S-phase transition, p130 is also specifically phosphorylated in G0-arrested cells. We have previously identified several phosphorylated residues that match the consensus site for glycogen synthase kinase 3 (GSK3) in the G0 form of p130.
View Article and Find Full Text PDFIn all eukaryotes, anaphase is triggered by the activation of a protease called separase. Once activated, separase cleaves a subunit of cohesin, a complex that links replicated chromatids before anaphase. Separase and cohesin are conserved from yeasts to humans.
View Article and Find Full Text PDFJ Immunol Methods
March 2003
Separase is a cysteine protease that participates in separation of sister chromatids during mitosis. Human separase is a 230-kDa enzyme that is inhibited by binding to its protein inhibitor securin, specific phosphorylation, and subcellular localization. To further characterize human separase, we raised monoclonal antibodies specific against a C-terminal fragment of the protein.
View Article and Find Full Text PDFThe retinoblastoma-related pocket proteins pRb, p107, and p130 are implicated in the control of cell proliferation, differentiation, and transformation. The function of pocket proteins is in part mediated by their ability to inhibit specific E2F transcription factors. The transcriptional activity of E2Fs is controlled by alteration of their nucleocytoplasmic localization during the cell cycle.
View Article and Find Full Text PDFPhysiological stimulation of platelets with thrombin brings about the release of protein kinase A (PKA) into the plasma. In human blood, this kinase singles out and phosphorylates vitronectin (Vn), a multifunctional regulatory protein, which was proposed to play an important role in the control of fibrinolysis. Here we present immuno-cytochemical evidence to show: (i) that intact platelets possess on their surface an ecto-PKA which can preferentially phosphorylate Vn; (ii) that in the resting platelet, both the catalytic and the regulatory subunits of PKA are present on the platelet surface, in the surface-connected canalicular system, and within the alpha-granules of the platelets; (iii) that the process initiated upon platelet activation, which leads to the formation of fibrin fibers and consequently forms the fibrin net, is accompanied by a translocation of PKA, of Vn, and of PAI-1 onto the fibrin fibers.
View Article and Find Full Text PDFThe retinoblastoma family of proteins including pRB, p107 and p130 undergoes cell cycle dependent phosphorylation during the mid-G1 to S phase transition. This phosphorylation is dependent upon the activity of cyclin D/cdk4. In contrast to pRB and p107, p130 is phosphorylated during G0 and the early G1 phase of the cell cycle.
View Article and Find Full Text PDFThe kinase splitting membranal proteinase (KSMP), was recently shown to be identical with the beta-subunit of meprin. Meprin is a metalloendoproteinase located in brush border membranes and composed of the two types of subunits, alpha and beta. Despite their high sequence homology and similar domain organization, meprin subunits are differently processed during maturation; meprin alpha is retained in the endoplasmic reticulum (ER), and undergoes a proteolytic removal of the transmembrane and cytoplasmic domains, prior to its export from this organelle.
View Article and Find Full Text PDFThe kinase splitting membranal proteinase (KSMP) is a metalloendopeptidase that inactivates the catalytic (C) subunit of protein kinase A (PKA) by clipping off its carboxyl terminal tail. Here we show that this cleavage occurs at Glu332-Glu333, within the cluster of acidic amino acids (Asp328-Glu334) of the kinase. The Km values of KSMP and of meprin beta (which reproduces KSMP activity) for the C-subunit are below 1 microM.
View Article and Find Full Text PDFThe Kinase-Splitting Membranal Proteinase (KSMP) is a metallo-endoproteinase that clips off the carboxyl terminus tail of the catalytic (C) subunit of protein kinase A to yield a truncated, catalytically inactive protein (C'). Here we report (a) a new procedure for the purification of KSMP, yielding a major protein band in SDS-polyacrylamide gel electrophoresis that correlates with the characteristic KSMP activity; (b) the sequence of tryptic peptides obtained from this band, suggesting an identity between this protein and meprin beta; (c) the immuno-detection by specific anti-peptide antibodies of both the alpha and the beta subunits of meprin in KSMP preparations; (d) the stable expression of meprin beta in a mammalian cell line (293) to establish a clone that constitutively expresses the full-length precursor of meprin beta; and (e) the optimalization of the proteolytic activation of this precursor to obtain an enzyme exhibiting the specific KSMP cleavage, suggesting that KSMP is either derived from, or identical with, the meprin beta gene product. It is hoped that these results will shed light on the possible physiological role of KSMP and the way it may affect protein kinase A-mediated processes.
View Article and Find Full Text PDFThe catalytic (C) subunit of protein kinase A (PKA) is regarded as a framework for the protein kinase family. Its sequence is composed of a conserved core (residues 40 300) between two segments at the amino and carboxyl termini of the protein. Since the various protein kinases differ in their specificity, it seems reasonable to assume that these nonhomologous segments may be involved in endowing each kinase with its individual specificity.
View Article and Find Full Text PDFProtein kinases share a considerable sequence homology in their catalytic core (residues 40-300 in PKA). Each core is flanked by "head" and "tail" segments at its amino- and carboxy-termini, which are different in the various kinases. These end segments may play an important role in creating the preferential affinity of each kinase for its physiological substrates or regulatory ligands.
View Article and Find Full Text PDFA new form of a low Km GTPase belonging to the family of regulatory GTP-binding G-proteins has been identified in bovine cerebellum. The molecular weight of this G-protein is several times as high as that of other G-proteins known to be alpha beta gamma heterotrimers: i. e.
View Article and Find Full Text PDFPromoter activities of different restriction fragments of the R8 DNA region of phage phi X 174 were compared. The studied DNA fragments included HindII fragment R8 (B-promoter), its left portion 49 nucleotide long, and the central segment containing 113 nucleotides generated by AluI. The promoter activity of these fragments was quantitated by the appearance of uridyltransferase and galactokinase activities in Escherichia coli clones carrying plasmids pHD68-17.
View Article and Find Full Text PDFA procedure for simultaneous large-scale purification of the bacteriophage-T4-induced polynucleotide kinase, DNA ligase, RNA ligase and DNA polymerase has been developed. The method involves bacterial cell disruption by sonication, fractionation of cell extract with polymin P, salt elution from the polymin pellets, ammonium sulfate precipitation, and subsequent column chromatography purification of the enzymes. To enrich the enzyme content highly in the initial source non-permissive Escherichia coli B-23 cells infected with T4 amN82 phage were used.
View Article and Find Full Text PDFChemically synthesized leu-enkephalin gene was fused to a large Eco RI-Bam HI fragment of pBR322 along with a Eco RI fragment of Ch4A phage DNA carrying the promoter and most of the E.coli beta-galactosidase gene. The resulting recombinant DNA was used to transform E.
View Article and Find Full Text PDFA purification procedure described previously resulting in electrophoretically pure Bacillus subtilis ATP-dependent DNAse has now been modified by adding a fractionation stage with Polymin P to permit large-scale isolation of the enzyme. It has been found that the enzyme molecule (Mr = 300000) consists of two large subunits with Mr 155000 and 140000. The purified enzyme has three activities: (1) DNAse on linear single-stranded and double-stranded DNAs (2) DNA-unwinding and (3) ATPase.
View Article and Find Full Text PDFThe fraction inhibiting ATP-dependent DNAase and some other enzyme activities was found in B. subtilis cell extracts. Two methods of its isolation were elaborated.
View Article and Find Full Text PDF