Publications by authors named "Cheston Tan"

Navigation to multiple cued reward locations has been increasingly used to study rodent learning. Though deep reinforcement learning agents have been shown to be able to learn the task, they are not biologically plausible. Biologically plausible classic actor-critic agents have been shown to learn to navigate to single reward locations, but which biologically plausible agents are able to learn multiple cue-reward location tasks has remained unclear.

View Article and Find Full Text PDF

Lifelog photo review is considered to enhance the recall of personal events. While a sizable body of research has explored the neural basis of autobiographical memory (AM), there is limited neural evidence on the retrieval-based enhancement effect on event memory among older adults in the real-world environment. This study examined the neural processes of AM as was modulated by retrieval practice through lifelog photo review in older adults.

View Article and Find Full Text PDF

Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information.

View Article and Find Full Text PDF

Faces are an important and unique class of visual stimuli, and have been of interest to neuroscientists for many years. Faces are known to elicit certain characteristic behavioral markers, collectively labeled "holistic processing", while non-face objects are not processed holistically. However, little is known about the underlying neural mechanisms.

View Article and Find Full Text PDF

Inspired by progresses in cognitive science, artificial intelligence, computer vision, and mobile computing technologies, we propose and implement a wearable virtual usher for cognitive indoor navigation based on egocentric visual perception. A novel computational framework of cognitive wayfinding in an indoor environment is proposed, which contains a context model, a route model, and a process model. A hierarchical structure is proposed to represent the cognitive context knowledge of indoor scenes.

View Article and Find Full Text PDF

Neuromorphic Vision sensors have improved greatly since the first silicon retina was presented almost three decades ago. They have recently matured to the point where they are commercially available and can be operated by laymen. However, despite improved availability of sensors, there remains a lack of good datasets, while algorithms for processing spike-based visual data are still in their infancy.

View Article and Find Full Text PDF

During wayfinding in a novel environment, we encounter many new places. Some of those places are encoded by our spatial memory. But how does the human brain "decides" which locations are more important than others, and how do backtracking and repetition priming enhances memorization of these scenes? In this work, we explore how backtracking improves encoding of encountered locations.

View Article and Find Full Text PDF

This paper presents a visual saliency modeling technique that is efficient and tolerant to the image scale variation. Different from existing approaches that rely on a large number of filters or complicated learning processes, the proposed technique computes saliency from image histograms. Several two-dimensional image co-occurrence histograms are used, which encode not only "how many" (occurrence) but also "where and how" (co-occurrence) image pixels are composed into a visual image, hence capturing the "unusualness" of an object or image region that is often perceived by either global "uncommonness" (i.

View Article and Find Full Text PDF

In the theoretical framework of this paper, attention is part of the inference process that solves the visual recognition problem of what is where. The theory proposes a computational role for attention and leads to a model that predicts some of its main properties at the level of psychophysics and physiology. In our approach, the main goal of the visual system is to infer the identity and the position of objects in visual scenes: spatial attention emerges as a strategy to reduce the uncertainty in shape information while feature-based attention reduces the uncertainty in spatial information.

View Article and Find Full Text PDF