Background: Use frequency and times are critical parameters for estimating realistic chemical exposures associated with the use of consumer products. Very limited information is available in the published literature for children's use patterns of art and craft materials at home and school.
Objective: Conduct a year-long survey of art materials use at home and school by pre-school and elementary school children, teachers, and parents which can be used to refine chemical exposure assessments for these consumer products.
On October 21-22, 2020 the HESI (Health and Environmental Sciences Institute) Protein Allergens, Toxins, and Bioinformatics Committee, and the Society of Toxicology Food Safety Specialty Section co-hosted a virtual workshop titled "From Protein Toxins to Applied Toxicological Testing". The workshop focused on the safety assessment of novel proteins contained in foods and feeds, was globally represented by over 200 stakeholder attendees, and featured contributions from experts in academia, government and non-government organizations, and agricultural biotechnology developers from the private sector. A range of topics relevant to novel protein safety were discussed, including: the state of protein toxin biology, modes and mechanisms of action, structures and activity, use of bioinformatic analyses to assess the safety of a protein, and ways to leverage computational biology with in silico approaches for protein toxin identification/characterization.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
March 2021
Mogrosides are the primary components responsible for the sweet taste of Monk fruit which is derived from Siraitia grosvenorii (Swingle), a herbaceous plant native to southern China. Many mogrosides have been identified from Monk fruit extract, but the major sweetness component of Monk fruit by mass is mogroside V, comprising up to 0.5% of the dried fruit weight.
View Article and Find Full Text PDFMiraculin is a glycoprotein with the ability to make sour substances taste sweet. The safety of miraculin has been evaluated using an approach proposed by the Food and Agriculture Organization of the United Nations and the World Health Organization for assessing the safety of novel proteins. Miraculin was shown to be fully and rapidly digested by pepsin in an in vitro digestibility assay.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a processing aid for the polymerization of commercially valuable fluoropolymers. Its widespread environmental distribution, presence in human blood, and adverse effects in animal toxicity studies have triggered attention to its potential adverse effects to humans. PFOA is not metabolized and exhibits dramatically different serum/plasma half-lives across species.
View Article and Find Full Text PDFThe estimated cancer risk from diesel exhaust particles (DEP) in the air is approximately 70% of the cancer risk from all air pollutants. DEP is comprised of a complex mixture of chemicals whose carcinogenic potential has not been adequately assessed. The polycyclic aromatic hydrocarbon quinone 9,10-phenanthrenequinone (9,10 PQ) is a major component of DEP and a suspect genotoxic agent for DEP induced DNA damage.
View Article and Find Full Text PDFThe capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats. Typical 6-h animal inhalation exposures to 50 and 500 ppm perchloroethylene, trichloroethylene, benzene, chloroform, methylene chloride, or methyl ethyl ketone (MEK) were simulated for postnatal day 10 (PND10), 2-month-old (adult), and 2-year-old (aged) rats. With the exception of MEK, predicted venous blood concentrations of VOCs in the aged rat were equal or up to 1.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae is an ideal model system for examining fundamental nitrogen oxide biochemistry. The utility of this model system lies in both the similarities and the differences between yeast and mammalian cells. The similarities between the two systems, with regards to many of the fundamental biochemical processes, allow studies in yeast to be extrapolated to mammalian systems.
View Article and Find Full Text PDFNitroxyl (HNO) was found to inhibit glycolysis in the yeast Saccharomyces cerevisiae. The toxicity of HNO in yeast positively correlated with the dependence of yeast on glycolysis for cellular energy. HNO was found to potently inhibit the crucial glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an effect which is likely to be responsible for the observed inhibition of glycolysis in whole cell preparations.
View Article and Find Full Text PDFGlyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate, one of the precursors for glycolytic ATP biosynthesis. The enzyme contains an active site cysteine thiolate, which is critical for its catalytic function. As part of a continuing study of the interactions of quinones with biological systems, we have examined the susceptibility of GAPDH to inactivation by 9,10-phenanthrenequinone (9,10-PQ).
View Article and Find Full Text PDFThe toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an effort to distinguish between these general mechanisms of toxicity, we have examined the toxicity of five quinones to yeast cells as measured by their ability to reduce growth rate. Yeast cells can grow in the presence and absence of oxygen and this feature was used to evaluate the role of redox cycling in the toxicity of each quinone.
View Article and Find Full Text PDF