Publications by authors named "Chestek C"

Intracortical brain-computer interfaces (iBCIs) can restore movement and communication abilities to individuals with paralysis by decoding their intended behavior from neural activity recorded with an implanted device. While this activity yields high-performance decoding over short timescales, neural data are often nonstationary, which can lead to decoder failure if not accounted for. To maintain performance, users must frequently recalibrate decoders, which requires the arduous collection of new neural and behavioral data.

View Article and Find Full Text PDF

The octopus simplified nervous system holds the potential to reveal principles of motor circuits and improve brain-machine interface devices through computational modeling with machine learning and statistical analysis. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded.

View Article and Find Full Text PDF

Brain-machine interface (BMI) controlled functional electrical stimulation (FES) is a promising treatment to restore hand movements to people with cervical spinal cord injury. Recent intracortical BMIs have shown unprecedented successes in decoding user intentions, however the hand movements restored by FES have largely been limited to predetermined grasps. Restoring dexterous hand movements will require continuous control of many biomechanically linked degrees-of-freedom in the hand, such as wrist and finger flexion, that would form the basis of those movements.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how sex differences influence dopamine (DA) release in specific brain regions (nucleus accumbens and dorsolateral striatum) using advanced electrode technology.
  • Female rats housed with others showed higher DA release in the nucleus accumbens compared to single females and males, while males didn’t show any housing-related changes.
  • In the dorsolateral striatum, females exhibited greater DA release than males, which was dependent on hormonal conditions, and both male and female rats showed increased DA release sensitivity over time with electrical stimulation.
View Article and Find Full Text PDF

Unlabelled: Brain-machine interfaces (BMI) aim to restore function to persons living with spinal cord injuries by 'decoding' neural signals into behavior. Recently, nonlinear BMI decoders have outperformed previous state-of-the-art linear decoders, but few studies have investigated what specific improvements these nonlinear approaches provide. In this study, we compare how temporally convolved feedforward neural networks (tcFNNs) and linear approaches predict individuated finger movements in open and closed-loop settings.

View Article and Find Full Text PDF

Background: To study neural control of behavior, intracellular recording and stimulation of many neurons in freely moving animals would be ideal. However, current technologies limit the number of neurons that can be monitored and manipulated. A new technology has become available for intracellular recording and stimulation which we demonstrate in the tractable nervous system of Aplysia.

View Article and Find Full Text PDF

Multielectrode arrays for interfacing with neurons are of great interest for a wide range of medical applications. However, current electrodes cause damage over time. Ultra small carbon fibers help to address issues but controlling the electrode site geometry is difficult.

View Article and Find Full Text PDF

Individuals with upper limb loss lack sensation of the missing hand, which can negatively impact their daily function. Several groups have attempted to restore this sensation through electrical stimulation of residual nerves. The purpose of this study was to explore the utility of regenerative peripheral nerve interfaces (RPNIs) in eliciting referred sensation.

View Article and Find Full Text PDF

Innovations in prosthetic devices and neuroprosthetic control strategies have opened new frontiers for the treatment and rehabilitation of individuals undergoing amputation. Commercial prosthetic devices are now available with sophisticated electrical and mechanical components that can closely replicate the functions of the human musculoskeletal system. However, to truly recognize the potential of such prosthetic devices and develop the next generation of bionic limbs, a highly reliable prosthetic device control strategy is required.

View Article and Find Full Text PDF

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation (ES; 60Hz) induced DA release was recorded in the NAc of single or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males.

View Article and Find Full Text PDF

While brain-machine interfaces (BMIs) are promising technologies that could provide direct pathways for controlling the external world and thus regaining motor capabilities, their effectiveness is hampered by decoding errors. Previous research has demonstrated the detection and correction of BMI outcome errors, which occur at the end of trials. Here we focus on continuous detection and correction of BMI execution errors, which occur during real-time movements.

View Article and Find Full Text PDF

Background: The analyses of neuronal circuits require high-throughput technologies for stimulating and recording many neurons simultaneously with single-neuron precision. Voltage-sensitive dyes (VSDs) have enabled the monitoring of membrane potentials of many (10-100 s) neurons simultaneously. Carbon fiber electrode (CFE) arrays allow for stimulation and recording of many neurons simultaneously, including intracellularly.

View Article and Find Full Text PDF

Brain-machine interfaces (BMIs) can restore motor function to people with paralysis but are currently limited by the accuracy of real-time decoding algorithms. Recurrent neural networks (RNNs) using modern training techniques have shown promise in accurately predicting movements from neural signals but have yet to be rigorously evaluated against other decoding algorithms in a closed-loop setting. Here we compared RNNs to other neural network architectures in real-time, continuous decoding of finger movements using intracortical signals from nonhuman primates.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that decoders trained in one context struggled to perform in another, leading to increased prediction errors, particularly in muscle activations.
  • * Despite these challenges, the online control of a virtual hand remained effective, likely due to consistent neural population activity across different contexts, allowing for quick adjustments during operation.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers implanted electrodes to capture signals from nerves in two amputees, allowing them to control a virtual prosthetic hand by translating their muscle commands.
  • * The experiments showed a high success rate of 94.7% for controlling various finger and wrist movements, improving to 100% when simplified to five movements, indicating effective and quick prosthetic control.
View Article and Find Full Text PDF

Carbon fiber (CF) is good for chronic neural recording due to the small diameter (7m), high Young's modulus, and low electrical resistance, but most high-density carbon fiber (HDCF) arrays are manually assembled with labor-intensive procedures and limited by the accuracy and repeatability of the operator handling. A machine to automate the assembly is desired.The HDCF array assembly machine contains: (1) a roller-based CF extruder, (2) a motion system with three linear and one rotary stages, (3) an imaging system with two digital microscope cameras, and (4) a laser cutter.

View Article and Find Full Text PDF

Brain-machine interfaces (BMIs) have shown promise in extracting upper extremity movement intention from the thoughts of nonhuman primates and people with tetraplegia. Attempts to restore a user's own hand and arm function have employed functional electrical stimulation (FES), but most work has restored discrete grasps. Little is known about how well FES can control continuous finger movements.

View Article and Find Full Text PDF

Extracting signals directly from the motor system poses challenges in obtaining both high amplitude and sustainable signals for upper-limb neuroprosthetic control. To translate neural interfaces into the clinical space, these interfaces must provide consistent signals and prosthetic performance.Previously, we have demonstrated that the Regenerative Peripheral Nerve Interface (RPNI) is a biologically stable, bioamplifier of efferent motor action potentials.

View Article and Find Full Text PDF

Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.

View Article and Find Full Text PDF

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems.

View Article and Find Full Text PDF

The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms.

View Article and Find Full Text PDF

Despite the rapid progress and interest in brain-machine interfaces that restore motor function, the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm that converts brain signals to a control signal for the prosthetic device is one of the limitations in achieving rapid and realistic finger movements. To achieve more realistic finger movements, we developed a shallow feed-forward neural network to decode real-time two-degree-of-freedom finger movements in two adult male rhesus macaques.

View Article and Find Full Text PDF

Advanced myoelectric hands enable users to select from multiple functional grasps. Current methods for controlling these hands are unintuitive and require frequent recalibration. This case study assessed the performance of tasks involving grasp selection, object interaction, and dynamic postural changes using intramuscular electrodes with regenerative peripheral nerve interfaces (RPNIs) and residual muscles.

View Article and Find Full Text PDF

Miniaturized and wireless near-infrared (NIR) based neural recorders with optical powering and data telemetry have been introduced as a promising approach for safe long-term monitoring with the smallest physical dimension among state-of-the-art standalone recorders. However, a main challenge for the NIR based neural recording ICs is to maintain robust operation in the presence of light-induced parasitic short circuit current from junction diodes. This is especially true when the signal currents are kept small to reduce power consumption.

View Article and Find Full Text PDF