Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance.
View Article and Find Full Text PDFBackground: Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair.
Objective: The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair.
Dietary consumption serves as the primary source of iron uptake, and erythropoiesis acts as a major regulator of systemic iron demand. In addition to intestinal iron absorption, macrophages play a crucial role in recycling iron from senescent red blood cells. The kidneys are responsible for the production of erythropoietin (Epo), which stimulates erythropoiesis, whereas the liver plays a central role in producing the iron-regulatory hormone hepcidin.
View Article and Find Full Text PDFIntestinal iron absorption is activated during increased systemic demand for iron. The best-studied example is iron deficiency anemia, which increases intestinal iron absorption. Interestingly, the intestinal response to anemia is very similar to that of iron overload disorders, as both the conditions activate a transcriptional program that leads to a hyperabsorption of iron via the transcription factor hypoxia-inducible factor 2α (HIF2α).
View Article and Find Full Text PDFCancer cells reprogram cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to break down dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer.
View Article and Find Full Text PDFIron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron mobilization through its molecular target ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload.
View Article and Find Full Text PDF